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Exercise 1
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A cylindrical iron rod with relative permeability µr = 2000 is placed coaxially inside a solenoid,
but fills only partially the volume inside the solenoid. The solenoid has a winding density (i.e.,
windings pr unit length) n = 2000 m−1 and the current in the solenoid wire is I = 3 A. We
assume that both the solenoid and the iron rod are sufficiently long that we may neglect edge
effects.
Assume first that we have linear response in the iron rod, i.e. M = χmH , and determine
H , B and M inside the solenoid, both inside (index j) and outside (index 0) the iron rod.
(Remember that the H-field is determined by the ”free” current, whereas B is determined by
the total current.)
Discuss the calculated value of Mj inside the iron rod, taking into account the saturation mag-

netization in iron, i.e., the maximum possible magnetization, which you calculated in exercise
1d in øving 14. Calculate next a corrected (maximum) value of Bj .

Given information
B = µ0 (H + M) = µrµ0H = µH

M = χmH = (µr − 1)H

(The last line is only valid when we have linear response.)

A couple of answers: Bj = 15 T (”uncorrected”), Bj = 2 T (”corrected”).
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Exercise 2
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The figure shows two solenoids 1 and 2 that are both wound onto the same cylinder of radius
R. We assume that the cylinder has magnetic properties as vacuum, i.e., we assume there is
no magnetization of the cylinder. Solenoid 1 har N1 windings, solenoid 2 has N2 windings.
Both solenoids are wound onto a length d of the cylinder, which is (appoximately infinitely)
long compared to the radius of the cylinder. (So the figure is only qualitatively correct...!) You
may assume that both solenoids are tightly wound, and that each winding of both solenoids
enclose the same amount of magnetic flux. (The wire of the solenoids is covered with some kind
of electrically insulating material, e.g. a layer of plastic, so that an electric current is forced
to follow the solenoid wire. This assumption is by the way implicit in all such exercises with
solenoids.)

a) Assume that solenoid 1 carries a current I1. What is then the strength of the magnetic
field B inside the solenoid? Next, what is the total magnetic flux φ1 enclosed by the wire of
solenoid 1 (i.e., all the N1 windings)? What is the total magnetic flux φ2 enclosed by the wire of
solenoid 2 (again: all the N2 windings)? (Note: There is no current in solenoid 2. The current
in solenoid 1 can be made e.g. by coupling it to a battery and a resistance.)

b) The ratio between the total enclosed magnetic flux φ1 and the current I1 in the current loop
itself is, by definition, a quantity which is called the self inductance L of the loop:

L =
φ1

I1

Then, what is the self inductance L of such a long cylindrical solenoid with radius R, length d

and N1 windings?

c) The ratio between the total enclosed magnetic flux φ2 that is enclosed by solenoid 2 and the
current I1 in solenoid 1 is, by definition, a quantity which is called the mutual inductance M

between the two current loops:

M =
φ2

I1

Then, what is the mutual inductance M between two such long cylindrical solenoids, both being
wound onto a cylinder of radius R over a length d, and with N1 and N2 windings, respectively?
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d) Determine numerical values for L and M (in SI units) when R = 1 cm, d = 60 cm, N1 = 1200,
and N2 = 600.
(Answers: L = 9.5 · 10−4, M = 4.7 · 10−4)

Comment: We will come back to mutual inductance and selfinductance in the final lectures,
and see why these are ”useful” quantities in many connections.

Exercise 3

Boundary conditions for E and B:

Let us take a look at how the electric field and the magnetic field ”behave” when we cross a
boundary surface. By ”boundary surface”, I simply mean a surface that divides space into two
regions, 1 ”above” and 2 ”below” the surface. Let’s first look at the electric field:

flateladningstetthet σ
område 1

område 2

The electric field is discontinuous if such a boundary surface contains electric charge σ pr unit
area:

E1 − E2 =
σ

ε0

n̂ (∗)

Here, E1 is the field in region 1 just above the surface, E2 correspondingly in region 2 just
below the surface, while n̂ is a unit normal vector directed upwards.
You notice that the equation (∗) is a compact way of expressing that the parallel component of
E is continuous,

E
‖
1 − E

‖
2 = 0,

whereas the normal component is discontinuous,

E⊥
1
− E⊥

2
=

σ

ε0

,

when we cross the boundary.
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Next, we look at the magnetic field:

strøm ut av
planet pr lengdeenhet = i

B + ∆ B

n̂

L

strøm på lengde L = i L

(ut av planet)

B

B
∆ B

Here, the boundary surface is oriented perpendicular to the paper plane. The magnetic field is
discontinuous if there runs a current i pr unit length in the boundary surface:

∆B = µ0 i × n̂

This means that both Bn and Bt‖ are continuous when crossing the plane, while Bt⊥ is discon-
tinuous with a disconinuity µ0i. Here, we have decomposed the tangential component Bt of B

into one component that is parallel to the current direction, Bt‖, and one component that is
perpendicular to the current direction, Bt⊥.

a) Look at previous exercises and your lecture notes (or examples in your book) and find a
couple of examples where you can control that these boundary conditions are fulfilled.

If our ”system” contains dielectric and/or magnetizable media, we may possibly have interfaces
where we know what the free charge σf pr unit area is, or what the free current if pr unit
length is. (But perhaps we cannot tell immediately what the total charge σ pr unit area is, or
what the total current i pr unit length is.) In such circumstances, we must in addition use the
following boundary conditions for the normal component Dn of the electric displacement,

D1n − D2n = σf ,

and the tangential component H t of the H field,

∆H t = if × n̂
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b) Let us look at some examples, in which we must use the various boundary conditions in
order to determine the field strengths:
Suppose we have a uniform electric field E0 = E0 ẑ. In this field we put a dielectric slab (overall
electrically neutral) with approximately infinite extent in the x and y directions, and thickness
h in the z direction. In other words, the slab is oriented perpendicular to the external field.
The material in the slab has relative permittivity εr.

E 0

E 0

x

z

rε
=?1D=?1E

What is the electric displacement D1 and the electric field E1 inside the dielectric slab? Repeat
with the slab oriented along the external field direction! (I.e.: With infinite extent in the y and
z directions, and thickness h in the x direction.)
Next, do the same things for an infinitely large magnetizable slab with thickness h and rela-
tive permeability µr, oriented perpendicular to and along the direction of a uniform external
magnetic field B0 = B0 ẑ, respectively. I.e.: Determine H1 and B1 inside the slab.
Did you get any surprising results? How do you explain that the electric field strength is
different inside the slab with the two orientations in the external field? And correspondingly:
How do you explain that the magnetic field strength is different inside the magnetizable slab
in the two cases?
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