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Exercise 1

The external current I generates an H field H = nI along the solenoid everywhere inside the
solenoid (because of Ampere’s law for H .) So, we can simply use that

B = µ0 (H + M) = µrµ0H

to determine the various quantitites:

Inside the iron:
Hj = nI = 2000 m−1

· 3 A = 6000 A/m

Bj = µrµ0Hj = 2000 · 4π · 10−7 (Vs/Am) · 6000 A/m = 15 T

Mj = (µr − 1)Hj = 1.2 · 107 A/m

In the airfilled part inside the solenoid:

H0 = Hj = 6000 A/m

B0 = µ0H0 = 7.5 mT

M0 = 0

The calculated value of the magnetization inside the iron rod, Mj = 1.2 · 107 A/m, is larger
than the saturation magnetization Ms = 1.6 · 106 A/m, and therefore not possible. The reason
is that we have used the linear relation B = µrµ0H between the magnetic field B and the field
H from the external current. However, here we have such a strong external field H that this
linear relation is no longer valid. All magnetic dipoles are already aligned with the external
field when H ≃ Ms/µr = 800 A/m. An additional increase in H cannot raise the value of M
any further.
Corrected, maximum value of Bj becomes

Bkorr

j = µ0 (Hj + Ms) = 4π · 10−7
·

(

6000 + 1.6 · 106
)

= 2 T
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Exercise 2

a) We have used Ampere’s law in the lectures to calculate the magnetic field inside a long
solenoid:

B = µ0nI1 = µ0

N1

d
I1

One winding of the solenoid wire encloses an area A = πR2, and therefore a magnetic flux

φ = BA = µ0

N1

d
I1πR2

Then, N1 windings must enclose a flux which is N1 times bigger, because here, the magnetic
field is constant everywhere inside the solenoid. Hence:

φ1 = N1φ = µ0

N2

1

d
I1πR2

One winding of solenoid 2 encloses exactly the same area, and therefore the same amount of
flux φ, so that N2 windings of solenoid 2 must enclose a total magnetic flux equal to

φ2 = N2φ = µ0

N1N2

d
I1πR2

b) The self inductance L becomes

L =
φ1

I1

= µ0

N2

1

d
πR2

c) Mutual inductance M becomes

M =
φ2

I1

= µ0

N1N2

d
πR2

d) Numerical values:

L = 4π · 10−7
·

12002

0.6
· π · 0.012 = 9.5 · 10−4

M = 4π · 10−7
·

1200 · 600

0.6
· π · 0.012 = 4.7 · 10−4

In the SI system, inductance has its own unit, the henry (H). So, here the self inductance L
is 0.95 mH and the mutual inductance M is 0.47 mH. Alternatively, we may use the unit T
m2/A, since magnetic flux must have the unit of magnetic field times area, i.e., T m2.
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Exercise 3

a) Examples:
For an infinitely large charged plane with charge σ pr unit area, the electric field is oppositely
directed on the two sides, and the field strength is σ/2ε0. Hence, a discontinuity of σ/ε0 in the
normal component of the field, and no discontinuity in the tangential component of the field.
Inside a metal sphere with charge Q, the electric field is zero. On the surface, at r = R, the
field is Q/4πε0R

2, directed radially outwards (if Q > 0), i.e., normal to the surface. Again, a
discontinuity of σ/ε0 in the normal component of the field, since σ = Q/4πR2 is the charge pr
unit area on the surface of the sphere.
An infinitely large plane carrying a uniform current i pr unit length results in a uniform magnetic
field µ0i/2, in opposite direction on the two sides of the plane, see øving 13, exercise 2. I.e.,
a discontinuity of µ0i, and if you take a look at øving 13, you will find out that we’re talking
about the component of B that lies in the plane of the current, and at the same time is normal
to the current direction.
Inside an infinitely long solenoid, the magnetic field is µ0nI, outside it is zero. Hence, a
discontinuity of µ0nI. The current is I pr turn, while the number of turns pr unit length is n,
so i = nI becomes the current pr unit length. Again, a discontinuity of µ0i.
Comment: No boundary surface is infinitely large, but if we come sufficiently close to the
surface, it will look as if it is infinite and flat. The total electric field on the surface must be
equal to the sum of the contributions form the ”nearby region”, i.e., the part of the surface that
looks large and flat, and the contribution from all the charges in ”the rest of the world”. The
charges in the rest of the world are all far away from the ”crossing point”, i.e., far away when
compared to the charges that are actually in the plane where we are crossing. ”The rest of the
world” therefore must contribute with the same field just below and just above the boundary
surface, i.e., with a contribution that is continuous. In other words, the whole discontinuity
in the electric field is due to the charges in the plane that we cross. And correspondingly for
the magnetic field: Total magnetic field is the sum of the contributions from the current in

the plane where we cross, and the contribution from all other currents in the world. Only the
current in the plane where we cross contribute to the discontinuity.

b) Dielectric slab perpendicular to constant external electric field E0:
Here we have boundary surfaces that are perpendicular to the fields. We cannot use the
boundary condition for E because we do not know how much charge we have in the boundary
surfaces between vacuum and the dielectric. We know that there is an induced (bound) charge,
positive in the upper surface and negative in the lower surface, but not how much. However,
we can use the boundary condition for D because we know that there is zero free charge in the
slab. Hence, we must have D1 = D0, where D0 = ε0E0 is the electric displacement outside the
slab. In addition, we have D1 = ε1E1 = εrε0E1. Thus:

D1 = ε0E0

E1 =
1

εr

E0

Dielectric slab parallel to constant external electric field E0:
Now we have boundaries parallel to the field direction. Then we can use that the parallel
component of E is continuous, i.e., E1 = E0. The relation D1 = εrε0E1 is of course still valid,
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so

D1 = εrε0E0

E1 = E0

Magnetizable slab perpendicular to constant external magnetic field B0:
Here we have again boundaries perpendicular to the fields. We may therefore use the fact that
Bn is continuous, i.e., B1 = B0. In addition we have B1 = µ1H1 = µrµ0H1. Hence

H1 =
1

µrµ0

B0

B1 = B0

Magnetizable slab parallel to constant external magnetic field B0:
Boundaries are now parallel to the fields. We know that there is an induced magnetization
current in the surface of the slab, but not how much. However, we may use the boundary
condition for H , because we know that there is zero free current in the slab. Hence we have
H1 = H0, where H0 = B0/µ0 is the H field outside the slab (vacuum). In addition we have
B1 = µrµ0H1. Thus

H1 =
1

µ0

B0

B1 = µrB0

Explanation of different E1 and B1 in the two situations:
Dielectric slab perpendicular to external field results in polarization, and a corresponding in-
duced charge in the surface. The induced charge contributes with an electric field opposite to
the external field, so that E1 becomes smaller than E0. With the slab parallel to the external
field, the induced surface charge on the slab is localized infinitely far away from ”where we
are”. Therefore, it does not contribute anything to the field ”where we are”, and E1 = E0.
A magnetizable slab parallel to the external field results in magnetization, and a corresponding
induced current in the surface of the slab. The induced current contributes to the field in
the same direction as the external field, so that B1 becomes larger than B0. With the slab
perpendicular to the external field, the induced surface current is localized infinitely far away
from ”where we are”. Hence, it does not contribute anything to the field ”where we are”, and
B1 = B0.
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