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Mechanical energy and momentum of wave pulses in a dispersionless,
lossless elastic medium, according to the linear theory

N. Gauthier and P. Rochon
Department of Physics, The Royal Military College of Canada, Postal Station 17000, Forces, Kingston,
Ontario K7K 7B4, Canada

(Received 15 October 2003; accepted 9 April 2004

We re-examine the linear theory of wave propagation through an elastic string under uniform
tension or a slender elastic rod from a perspective that focuses on the flow of mechanical energy and
mechanical momentum. Continuity equations are established for the flow of energy and momentum,
leading to two boundary conditions for the net wave displacement. The important special case of a
small amplitude pulse of arbitrary shape traveling through a uniform slender medium joined to
another medium with a different linear mass density is examined in detail. The new boundary
conditions lead to the correct relative amplitudes for the reflected and transmitted pulses. We obtain
the instantaneous mechanical energy and momentum of the incident, reflected, and transmitted
pulses and show that the net mechanical energy and momentum are separate constants of motion.
The cases of an incoming pulse described by a Lorentzian and a Gaussian distribution are suggested
as problems to be solved by the interested reader20@ American Association of Physics Teachers.
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[. INTRODUCTION effects will not be considered. Readers interested in nonlin-
ear wave theory should consult Ref. 5, for example.

If there is no dispersion or dissipation, a wave pulse trav- Equation (1) for the mechanical energy density is well
eling on a taut elastic string or a slender elastic rod carriegnown and used oftel.>°Although Eq.(2) for the mechani-
with it a net mechanical energy and a net mechanical mocal momentum density also is well knoWt it is not often
mentum that are constant over time. In lowest-order or lineagsed. For example, Corben and Stéhteake extensive use
approximation for the wave equation, the standard expresof Eq. (1) in their treatment of the stretched string, but they
sions for the mechanical energy and the mechanical momemnerely observe that the mechanical momentum density “will
tum densities are® average to zero” in time and that because the “——term

2 2 vanishes either in the mean or completely, we ignore it
Ue(x,t) = Ep(X) (M) (,, ﬁu(x,t)) } (1)  henceforth——.” Morse and Feshbdcand Goldsteif also
2 ot X introduced Eq(2) and referred to the mechanical momentum
and density, but did not discuss it any further in the context of the
linear wave equation. Gurevich and ThellGngefined the
U _ au(x,t) ,  density of “ordinary momentum” as in Eq(2), but then
p(X,1)=p(X) g 2) argued, consistent within Ref. 1, that the net mechanical mo-
) - ) ] ] mentum is of little interest because it vanishes, whereas the
wherex is the positiont is the time, andi(x,t) is the local  gpace integral of the energy density does not. As a result, the
displacement of the medium with respect to its equilibriummechanical energy of the system is an “interesting integral
position. Also,p(X) is the equilibrium linear mass density of of the motion” whereas that for the mechanical momentum is
the medium and/(x) is the velocity of the wave at. For  not!
waves on a stringy is taken to be purely transverse to the Gilbert and Mollow are a welcome exception and consid-
axis, while for waves in a rody is assumed to be purely ered the transport of mechanical momentum by a purely lon-
longitudinal. The quantity, gitudinal wave in a slender elastic rod. Those authors started
F=p(X) »(X)2 3) from Eq. (2) and took the total mqme_n;um of the; rod to be
' the sum of the momenta of the individual particles. They
is assumed to be constant over time and independert of then showed that when an external particle is coupled to the
For transverse waves on a strirfgis the equilibrium ten-  rod, “——The sum of the momentum of the particle plus the
sion; for longitudinal waves in an elastic rol,represents ordinary momentum of the rod is ... conserved.——" The
the Young’s modulus of the material. We will not consider expression “ordinary momentum” refers to the space inte-
situations wherd- varies with the position in the medium gral of Eq.(2), that is, the net mechanical momentum of the
such as a rope that hangs vertically in a gravitational field. wave.

Nonlinearities are intrinsic to any vibrating elastic me- The goal of this article is to examine, in more detail than
dium. When the nonlinearities are large, they can give rise tan previous studies, the consequences of(Egfor the linear
important coupling between the tranverse and the longituditheory of mechanical waves in dispersionless and lossless
nal modes of motion of the medium in which they tra{/éls media. It will be shown that Eqg1l) and(2) lead to a con-

a result, energy and momentum can be exchanged betwesistent theory for the propagation of mechanical waves in a
corresponding modes of motion of the vibrating medium.linear medium. We also show that this theory is compatible
However, we will assume that the nonlinearities are negliwith conservation of the total mechanical energy and total
gible for the pulse amplitudes that are of interest so theimechanical momentum. In our approach, the mechanical mo-
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mentum density, Eg2), is not an insignificant quantity. On represents the current of mechanical energy at timepo-

the contrary, it is as important as the mechanical energy dersition x in the medium. Equatiof6) is the usual form for a

sity, Eq. (1). continuity equation and it governs the flow of mechanical
The article is organized as follows. The two equations ofenergy in the medium.

continuity are obtained in Sec. Il. The important case of two Unless there is an external sink or source of mechanical

uniform media with different linear mass densities joined toenergy atx, jg must be continuous at If we assume that

one another is examined in Sec. lll. We show that a consethere is no such external coupling at any point within the

guence of the continuity equations for the energy and momedium, we have

mentum flow is the correct boundary conditions for the wave

amplitudes. These boundary conditions are usually derived in

an ad hoc manner by requiring that the net displacement and

its gradient be continuous across the junctidnin the  for all x andt.

present treatment these extra assumptions are not required,Equation (8) is valid within the linear theory of one-

instead they emerge naturally from the equations of continugimensional mechanical waves and thus applies at a bound-

ity for the energy and momentum. Other consequences of thery where the linear mass density may exhibit a sudden

present approach are results for the mechanical energy amthange. At such a boundary, we have

momentum of the incident, reflected, and transmitted pulses

as functions of the time. It will then be shown that the net Ut JU(X,)| _ du(x,t) du(x,t)|

mechanical energy and net momentum of this three-pulse X at X at

wave system are separately conserved. The specific cases of ) ) ]

Lorentzian- and Gaussian-shaped pulses are suggested as Bgcause= is assumed to be uniform. The subscripts LB and

lim je(x—¢€,t)= lim je(x+e€,t), (8)

e—0+ e—0+

, (€)

|LB ‘RB

ercises for the interested reader. RB S|gn|fy the left and r|ght boundarieS, reSpeCtiVer. Equa'
tion (9) represents a boundary condition on the wave ampli-
tudes.

Il. CONTINUITY EQUATIONS FOR THE FLOW OF We now turn to the flow of mechanical momentum. We

consider the partial time derivative of E() and use Egs.

MECHANICAL ENERGY AND MOMENTUM (4) and (3) to obtain

The linear form of the classical wave equation in a lossless JU U 2u 9 Ju
and dispersionless medium is R - |F— 10
pv : (10)
ot Jt? ox2  IX\ odX
Pu 1 % _ _ o
TN (4) This result also can be expressed in the form of a continuity
ax?  v? gt? ;
equation:
wherev? is related by Eq(3) to the linear mass density of :
. X N . . dUp djp
the medium and the uniform equilibrium tension or the uni- ——+ —=0. (11
form Young’s modulus. As a result,= v(x) may be a func- gt ax
tion of x, but not oft. By definition,
We start by deriving the continuity equation for the en-
ergy. We take the partial derivative of Ed.) with respect to jp=—F 5_“ (12)
time and use Eq4) to find P ax
Ug au d%u ,du 92U is the current associated with the flow of mechanical momen-
=P 5 TPV o tum through the medium. Equatighl) controls the flow of
ot ot g2 X Ixot . .
mechanical momentum. Consequently, in the absence of an
au 22U P U Ju external sink or source of momentumtjp will be con-
=p| —|| vVP— |+ —| prP— — tinuous atx, that is,
at Ix2 IX ax ot ] ) ] ]
lIm jp(X—e€,t)= lim jp(X+e€,t). (13
J ( 2au) au e—0+ €0+
-\ PV == . . . .
ax \P¥ ax | at Equation (13) is valid for the linear theory of one-
5 ) dimensional mechanical waves for materials that are sub-
_guou g ouduy Ul jected to uniform tension or are characterized by a uniform
at gx2  ax |\ ax at gx2 ot Young's modulus and is valid at a boundary between two
uniform media with different linear mass densities. Hence, as
4 ( au au> 5 in Eq. (9), we have
ax\ " ax at)’ au(xt)|  au(xt)
The uniformity of pr?=F was used. We then have IX |LB_ IX |RB' (14
JUEg ﬁ _ 6) Equation(14) represents a second boundary condition on the
ot X ' wave displacements.
Where The substitution of Eq(14) into Eq. (9) gives
JU au au(x,t)‘ _au(x,t)‘ 15
je=—F— — 7 - .
ie X 31 (7) T P T
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Equations(14) and (15) form the complete set of indepen- Similarly, Eq.(15) gives
dent boundary conditions for the wave amplitudes in a spe- 1+ A—A 23)

cific situation. Note that Eq14) is identical to the boundary RTOT:

condition that is obtained by arguing that, for transverse Equations(22) and (23) represent the same relation be-
waves, the slopes of the string must match across the boungween the amplitudes as that given by the standard approach
ary to avoid having the mass elemenkahove laterally; see and are readily solved to give

Ref. 8, for example. Unfortunately, this kind of reasoning is

not as convincing for longitudinal waves in a slender rod: A :(1_ 1" 14 " A=2
there is a necessity for lateral motion. Also note that @§) R v vy’ T
relates the local time rate of change of the net displacemen
whereas the usual requirement is that the net amplitudes

continuous across the junction. It is easily shown by integratpu\liles’ respe::tlvlelty. th hanical i q
ing over time, however, that these requirements are equiva-_''c NOW caculate theé mechanical momentum and energy

; - N associated with each pulse. Then we will show that the alge-
lent. The time integral of Eq(15) indicates thali(x.t)|. braic sum of the individual momenta and of the individual
—u(x,t)|gg @ndu(x,tg) | g — U(X,to)|rg Must be equal at all

. 8 . energies are two separate constants of motion, as expected.
times. Consequently, if it is assumed that the net displace- tha mechanical momentum of each pulse is given by in-
ments across the boundary are equal at some initial time te?rating Eq(2) as follows:

then these displacements must be equal for any subsequen

1+ ﬁ), (24)

Vo

ts,, . .
B?&hlch are the usual results for the reflected and transmitted

time t. 0 of(t—xlvy)
P|(t)=f_ dxpr————
lll. ENERGY AND MOMENTUM FOR A SYSTEM t df(z)
WITH A JUNCTION = _Plvlf dz—~=palf(=)=1(O], (29
Consider a junction at=0 between two slender, uniform 0 It (t+x/vy)
media. The linear mass density for this junction is PR(t):f prlARTl
p(X)=p1, —o=x=<0, h
(16) t df(z)
=p2, O0<Xs+o, =p1iAr| dZF:plleR[f(t)_f(_w)],

wherep; and p, are uniform and constant. A small ampli-

tude wave pulse described by (26)
=f(t— o af(t—xlv

U (x,0) = f(t=x/vy), (17 P (t)= f dxppAr _ 2)

is sent fromx= —o at timet— — o and eventually interacts 0

with the junction. As is well known, general solution of the —= df(2)

wave equation for this case gives one reflected and one trans- = —poVoAt f dz d

mitted wave pulse and can be representéd as t z
Ur(X,t)=Agf(t+x/vy), (18 = pavaAqf(t) —f(—o0)]. (27)
ur(x,t)=Af(t—x/v,), (199 A change of variable of the type=txx/v, with time t

. o assumed to be finite, was made to obtain EBS)—(27). It is
respectively, where; and v, are the phase velocities in the clear that the momentum of each wave pulse varies explicitly
corresponding mediag andAr are unknown amplitudes to  with the time. We now show that the net instantaneous mo-
be determined from the boundary conditions at the junctionmentum is a constant of motion.

Equations(17)—(19) obviously satisfy the wave equation, At time t, the net momentun®y(t), is the algebraic sum
Eq. (4), and allow us to find the unknown amplitudeéss  of the instantaneous momenta of the three individual pulses,
andAt. To do so, note that as given in Eqs(25—(27). We have that

of(tExlvy| 1 9f(t=x/vy) Pn(t)=P(t)+Pg(t)+P(t)
X |- wvr o
1 df(t) =pvy| () =f(1)) + Ar(f(t) = f(—))
—x— (20
V1 dt P2V2
+—Ar(f(t) = f(—))
af(t—xlvy) 1 of(t—x/v,) piv1
ax v, at o
e e = pawy| F(o0) = F(—0) + (F(— =)
1 df(t)
=———, (21
Vo dt Vl
) ) _f(t))(l_AR_ _AT)
With the help of these results, EAL4) gives V2
=pqvq[f(0)—f(—0 28)
l_AR:EAT- 22) pava[ f(oe)—1( )] (
Vo where
1229 Am. J. Phys., Vol. 72, No. 9, September 2004 N. Gauthier and P. Rochon 1229
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p2v2 V1

=—, (29
pivy V2
and
V1
1-Ag=—A7 (30
Vs

were used; see EqE3) and(22), respectively. The total me-
chanical momentum of the system is equal to a constant and

is thus conserved.
We now turn to the energy of the individual puls&s(t),

Eg(t), and E(t), and obtain the total instantaneous me-

chanical energy of the entire systefy(t). First consider
the total energy in the system in the regioaO:

Sl

1
Ex<0(t)=§J dxp

En(t)=E(t)+Eg(t) + E1(t)

=pyvi (Io=11(1) + AR(Io+14(1))

+?AT(lo+ll<t)>

=piry|lo 1+AR+—A2 +14(t)

=2pyvilo, (39

14
1+ AL+ —1A$)
¢

where Eqs(22), (23), and(29) were used. The sum of the
individual energies is a constant: the net energy is thus con-
served.

We now suggest two specific distributions for solution by
the interested reader and present them as exercises.

J . (9u| auR . au, IUR shléeta tfrl]ﬁlcitrilgr?sming pulse be described by the following
*P1 o) et P '
2
B 1f0 . auy\ [ dug . AuR\? f(z2)=1 27/ (Lorentzian, (40)
2.9 at )\ ot | ot z
_ — 22212 H
au| auy\ | dug g2 f(z)=le (Gaussiain (41
+ X +2 I\ a ) Tl 3D The parametery and o characterize the width of each pulse
and| determines the maximum value of the incident pulse
Note from Eqs(17) and(18) that amplitudes. These shapes are of particular interest because
9 P P P the time-dependent part of the momentum and of the energy
Mi__ M dUR_ IUR integrals can be evaluated exactly for the incident, reflected,
V]_ I} Vl . (32) -
ot IX ot IX transmitted, and net pulses.
We find that Problem 1: Use the above shapes to show that the integrals
of Egs.(37) and(38) are as follows:
_ 0 d (9U| 2 (9UR 2 7T|2
Ex<o(t)= f_oc Xp1 ot + ot (33 |o=§, (42)
The cross terms represent the effects of interference of the 12 t 2.2 g4
two pulses. The energy is unaffected by the process, in con- | (t )_ + Y Y
trast with the strong effects of this interference on the net 41 (1?4 9% 3(t?+ 9%  3(t%+y?)?
local displacement of the me_dium. L t
The energy of each pulse is thus + Ztant _” 43)
0 au, 2 Y Y
E'(t):_ffwdxi)l St ~Prvallo= (D], (34 for the Lorentzian, and
® Izo\/;
0 Jug) 2 lo=12 4f dzZe 7%= 44
Er(t)= f dx;al(g) =piAYlo+11(D], (35 o=ltor | dz 4 @4
20
* &uT 2 —12 ﬁ - — o2
Ex(t)= fo dXPz(W) =pavAillo+1u(D],  (36) W(O=Fog|erllot) = ——e "), 49

after introducingz=t=x/v for each case, as done for the

momentum integrals. By definition,

[, [df(2))?

IozfO dz( 4z )
df

)

(37

(38)

for the Gaussian. In Ed45), erf(2) is the error function.

Problem 2: Obtain explicit expressions for the momentum
and the energy contributions of each individual pulisei-
dent, reflected, etg.as a function of time.

IV. CONCLUDING REMARKS

We have re-examined the linear theory of wave propaga-

The energy of each pulse varies in time. We now show thation in an elastic string under uniform tension or in a slender

the total instantaneous energy is a constant of motion.
At time t, the total mechanical energy of the pulses is

1230 Am. J. Phys., Vol. 72, No. 9, September 2004

elastic rod characterized by a uniform Young's modulus. Our
perspective differs from the standard approach, in that we
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first established two continuity equations, one for the methis three-pulse system were shown to be separate constants
chanical energy and the other for the mechanical momentunaf motion.

It was shown that these continuity equations lead directly to We hope that the present approach will encourage authors
the boundary conditions for the wave amplitudes. The first ofaind teachers to discuss a subject that has been neglected in
these conditions is that the gradients of the net wave distextbooks and in the pedagogical literature, namely, the me-
placement must match across a boundary. This condition ishanical momentum that is carried by waves in linear theory
identical to that obtained by the standard approach. The seof the wave equation.

ond condition states that the local time rate of change of the

net wave displacement must be equal across the boundaryy. c. corben and P. Stehilassical Mechanics2nd ed.(Wiley, New

This condition differs from the condition that is normally vork, 1964.

used, that is, the net displacements of the wave must be equé®. M. Morse and H. Feshbackiethods of Theoretical Physi¢slcGraw—
across a boundary. However, it was shown that these state}ill. New York, 1953, Vol. I. , , ,

ments, although different, are fully compatible with one an- ?éSgoldsteln, Classical Mechanics(Addison—Wesley, Reading, MA,
other. . L . 4J. A. Elliott, “Intrinsic nonlinear effects in vibrating strings,” Am. J. Phys.
The case of a small-amplitude incident pulse of arbitrary 4g 47g8_480(1980.

shape at a junction between two media with different linearsH. J. Pain,The Physics of Vibrations and Wayesth ed. (Wiley, New
mass density also was examined. The new boundary condi-York, 1999.

tions were shown to lead to the correct relative amplitudes’V. L. Gurevich and A. Thellung, “On the quasimomentum of light and
for the reflected and for the transmitted pulses. Explicit ex- matter and its conservation,” Physical88 654-674(1992.
pressions for the instantaneous mechanical energy and foﬁi-o':-s?',f’ni“f”gh;gé '\gggo_"gzyfgée&m”m of longitudinal elastic vibra-
the instantaneous mechanical momentum of the incident, rees 'p"Frenchvibrations and Wave&Norton, New York, 1971

fleCted, and transmitted pulses also were Obta|ned, and the: S. Crawford, JrWavesThe Berke|ey Physics Course Vo|(cGraW_

net mechanical energy and the net mechanical momentum oill, New York, 1968.

SCIENTIFIC ATMOSPHERE

It if difficult to describe for the general reader the intellectual flavor, the feeling, of a scientific,
“atmosphere.” There is no specific English word for this impression. Odor and smell have un-
pleasant connotations; perfume is artificial; aura is suggestive of a mystery, of the supernatural.
The younger scientists did not have much of an aura, they were bright young men, not geniuses.
Perhaps only Feynman among the young ones had a certain aura.

Stanislaw M. UlamAdventures of a MathematiciaiCharles Scribner’s Sons, 198&Reprinted inThe World Treasury of
Physics, Astronomy, and Mathematitsttle, Brown and Company, Boston, MA, 1991p. 717.
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