
Mechanical energy and momentum of wave pulses in a dispersionless,
lossless elastic medium, according to the linear theory
N. Gauthier and P. Rochon 
 
Citation: Am. J. Phys. 72, 1227 (2004); doi: 10.1119/1.1758227 
View online: http://dx.doi.org/10.1119/1.1758227 
View Table of Contents: http://ajp.aapt.org/resource/1/AJPIAS/v72/i9 
Published by the American Association of Physics Teachers 
 
Additional information on Am. J. Phys.
Journal Homepage: http://ajp.aapt.org/ 
Journal Information: http://ajp.aapt.org/about/about_the_journal 
Top downloads: http://ajp.aapt.org/most_downloaded 
Information for Authors: http://ajp.dickinson.edu/Contributors/contGenInfo.html 

Downloaded 08 Apr 2013 to 129.241.49.215. Redistribution subject to AAPT license or copyright; see http://ajp.aapt.org/authors/copyright_permission

http://ajp.aapt.org/?ver=pdfcov
http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/test.int.aip.org/adtest/L23/28489377/x01/AIP/WebAssign_AJPCovAd_1640banner_03_13thru03_26_2013/WebAssign_Download_Banner_Physics_09062012.jpg/7744715775302b784f4d774142526b39?x
http://ajp.aapt.org/search?sortby=newestdate&q=&searchzone=2&searchtype=searchin&faceted=faceted&key=AJPIAS&possible1=N. Gauthier&possible1zone=author&alias=&displayid=AAPT&ver=pdfcov
http://ajp.aapt.org/search?sortby=newestdate&q=&searchzone=2&searchtype=searchin&faceted=faceted&key=AJPIAS&possible1=P. Rochon&possible1zone=author&alias=&displayid=AAPT&ver=pdfcov
http://ajp.aapt.org/?ver=pdfcov
http://link.aip.org/link/doi/10.1119/1.1758227?ver=pdfcov
http://ajp.aapt.org/resource/1/AJPIAS/v72/i9?ver=pdfcov
http://www.aapt.org/?ver=pdfcov
http://ajp.aapt.org/?ver=pdfcov
http://ajp.aapt.org/about/about_the_journal?ver=pdfcov
http://ajp.aapt.org/most_downloaded?ver=pdfcov
http://ajp.dickinson.edu/Contributors/contGenInfo.html?ver=pdfcov


Mechanical energy and momentum of wave pulses in a dispersionless,
lossless elastic medium, according to the linear theory

N. Gauthier and P. Rochon
Department of Physics, The Royal Military College of Canada, Postal Station 17000, Forces, Kingston,
Ontario K7K 7B4, Canada

~Received 15 October 2003; accepted 9 April 2004!

We re-examine the linear theory of wave propagation through an elastic string under uniform
tension or a slender elastic rod from a perspective that focuses on the flow of mechanical energy and
mechanical momentum. Continuity equations are established for the flow of energy and momentum,
leading to two boundary conditions for the net wave displacement. The important special case of a
small amplitude pulse of arbitrary shape traveling through a uniform slender medium joined to
another medium with a different linear mass density is examined in detail. The new boundary
conditions lead to the correct relative amplitudes for the reflected and transmitted pulses. We obtain
the instantaneous mechanical energy and momentum of the incident, reflected, and transmitted
pulses and show that the net mechanical energy and momentum are separate constants of motion.
The cases of an incoming pulse described by a Lorentzian and a Gaussian distribution are suggested
as problems to be solved by the interested reader. ©2004 American Association of Physics Teachers.
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I. INTRODUCTION

If there is no dispersion or dissipation, a wave pulse tr
eling on a taut elastic string or a slender elastic rod car
with it a net mechanical energy and a net mechanical m
mentum that are constant over time. In lowest-order or lin
approximation for the wave equation, the standard exp
sions for the mechanical energy and the mechanical mom
tum densities are1–3

UE~x,t !5
1

2
r~x!F S ]u~x,t !

]t D 2

1S n~x!
]u~x,t !

]x D 2G , ~1!

and

UP~x,t !5r~x!
]u~x,t !

]t
, ~2!

wherex is the position,t is the time, andu(x,t) is the local
displacement of the medium with respect to its equilibriu
position. Also,r(x) is the equilibrium linear mass density o
the medium andn(x) is the velocity of the wave atx. For
waves on a string,u is taken to be purely transverse to thex
axis, while for waves in a rod,u is assumed to be purel
longitudinal. The quantity,

F5r~x!n~x!2, ~3!

is assumed to be constant over time and independentx.
For transverse waves on a string,F is the equilibrium ten-
sion; for longitudinal waves in an elastic rod,F represents
the Young’s modulus of the material. We will not consid
situations whereF varies with the position in the medium
such as a rope that hangs vertically in a gravitational fie

Nonlinearities are intrinsic to any vibrating elastic m
dium. When the nonlinearities are large, they can give ris
important coupling between the tranverse and the longitu
nal modes of motion of the medium in which they travel.4 As
a result, energy and momentum can be exchanged betw
corresponding modes of motion of the vibrating mediu
However, we will assume that the nonlinearities are ne
gible for the pulse amplitudes that are of interest so th
1227 Am. J. Phys.72 ~9!, September 2004 http://aapt.org
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effects will not be considered. Readers interested in non
ear wave theory should consult Ref. 5, for example.

Equation ~1! for the mechanical energy density is we
known and used often.1–3,5Although Eq.~2! for the mechani-
cal momentum density also is well known,1–3 it is not often
used. For example, Corben and Stehle1 make extensive use
of Eq. ~1! in their treatment of the stretched string, but th
merely observe that the mechanical momentum density ‘‘w
average to zero’’ in time and that because the ‘‘——te
vanishes either in the mean or completely, we ignore
henceforth——.’’ Morse and Feshbach2 and Goldstein3 also
introduced Eq.~2! and referred to the mechanical momentu
density, but did not discuss it any further in the context of t
linear wave equation. Gurevich and Thellung6 defined the
density of ‘‘ordinary momentum’’ as in Eq.~2!, but then
argued, consistent within Ref. 1, that the net mechanical m
mentum is of little interest because it vanishes, whereas
space integral of the energy density does not. As a result
mechanical energy of the system is an ‘‘interesting integ
of the motion’’ whereas that for the mechanical momentum
not.1

Gilbert and Mollow7 are a welcome exception and consi
ered the transport of mechanical momentum by a purely l
gitudinal wave in a slender elastic rod. Those authors sta
from Eq. ~2! and took the total momentum of the rod to b
the sum of the momenta of the individual particles. Th
then showed that when an external particle is coupled to
rod, ‘‘——The sum of the momentum of the particle plus th
ordinary momentum of the rod is ... conserved.——’’ Th
expression ‘‘ordinary momentum’’ refers to the space in
gral of Eq.~2!, that is, the net mechanical momentum of t
wave.

The goal of this article is to examine, in more detail th
in previous studies, the consequences of Eq.~2! for the linear
theory of mechanical waves in dispersionless and loss
media. It will be shown that Eqs.~1! and ~2! lead to a con-
sistent theory for the propagation of mechanical waves i
linear medium. We also show that this theory is compati
with conservation of the total mechanical energy and to
mechanical momentum. In our approach, the mechanical
1227/ajp © 2004 American Association of Physics Teachers
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the
mentum density, Eq.~2!, is not an insignificant quantity. On
the contrary, it is as important as the mechanical energy d
sity, Eq. ~1!.

The article is organized as follows. The two equations
continuity are obtained in Sec. II. The important case of t
uniform media with different linear mass densities joined
one another is examined in Sec. III. We show that a con
quence of the continuity equations for the energy and m
mentum flow is the correct boundary conditions for the wa
amplitudes. These boundary conditions are usually derive
an ad hoc manner by requiring that the net displacement
its gradient be continuous across the junction.8,9 In the
present treatment these extra assumptions are not requ
instead they emerge naturally from the equations of cont
ity for the energy and momentum. Other consequences o
present approach are results for the mechanical energy
momentum of the incident, reflected, and transmitted pu
as functions of the time. It will then be shown that the n
mechanical energy and net momentum of this three-p
wave system are separately conserved. The specific cas
Lorentzian- and Gaussian-shaped pulses are suggested
ercises for the interested reader.

II. CONTINUITY EQUATIONS FOR THE FLOW OF
MECHANICAL ENERGY AND MOMENTUM

The linear form of the classical wave equation in a lossl
and dispersionless medium is

]2u

]x2
5

1

n2

]2u

]t2
, ~4!

wheren2 is related by Eq.~3! to the linear mass density o
the medium and the uniform equilibrium tension or the u
form Young’s modulus. As a result,n5n(x) may be a func-
tion of x, but not oft.

We start by deriving the continuity equation for the e
ergy. We take the partial derivative of Eq.~1! with respect to
time and use Eq.~4! to find

]UE

]t
5r

]u

]t

]2u

]t2
1rn2

]u

]x

]2u

]x]t

5rS ]u

]t D S n2
]2u

]x2 D 1
]

]x S rn2
]u

]x

]u

]t D
2

]

]x S rn2
]u

]x D ]u

]t

5F
]u

]t

]2u

]x2
1

]

]x S F
]u

]x

]u

]t D2F
]2u

]x2

]u

]t

5
]

]x S F
]u

]x

]u

]t D . ~5!

The uniformity ofrn25F was used. We then have

]UE

]t
1

] j E

]x
50, ~6!

where

j E[2F
]u

]x

]u

]t
~7!
1228 Am. J. Phys., Vol. 72, No. 9, September 2004
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represents the current of mechanical energy at timet at po-
sition x in the medium. Equation~6! is the usual form for a
continuity equation and it governs the flow of mechanic
energy in the medium.

Unless there is an external sink or source of mechan
energy atx, j E must be continuous atx. If we assume that
there is no such external coupling at any point within t
medium, we have

lim
e→01

j E~x2e,t !5 lim
e→01

j E~x1e,t !, ~8!

for all x and t.
Equation ~8! is valid within the linear theory of one

dimensional mechanical waves and thus applies at a bo
ary where the linear mass density may exhibit a sud
change. At such a boundary, we have

]u~x,t !

]x

]u~x,t !

]t U
LB

5
]u~x,t !

]x

]u~x,t !

]t U
RB

, ~9!

becauseF is assumed to be uniform. The subscripts LB a
RB signify the left and right boundaries, respectively. Equ
tion ~9! represents a boundary condition on the wave am
tudes.

We now turn to the flow of mechanical momentum. W
consider the partial time derivative of Eq.~2! and use Eqs.
~4! and ~3! to obtain

]UP

]t
5r

]2u

]t2
5rn2

]2u

]x2
5

]

]x S F
]u

]xD . ~10!

This result also can be expressed in the form of a contin
equation:

]UP

]t
1

] j P

]x
50. ~11!

By definition,

j P[2F
]u

]x
~12!

is the current associated with the flow of mechanical mom
tum through the medium. Equation~11! controls the flow of
mechanical momentum. Consequently, in the absence o
external sink or source of momentum atx, j P will be con-
tinuous atx, that is,

lim
e→01

j P~x2e,t !5 lim
e→01

j P~x1e,t !. ~13!

Equation ~13! is valid for the linear theory of one
dimensional mechanical waves for materials that are s
jected to uniform tension or are characterized by a unifo
Young’s modulus and is valid at a boundary between t
uniform media with different linear mass densities. Hence
in Eq. ~9!, we have

]u~x,t !

]x U
LB

5
]u~x,t !

]x U
RB

. ~14!

Equation~14! represents a second boundary condition on
wave displacements.

The substitution of Eq.~14! into Eq. ~9! gives

]u~x,t !

]t U
LB

5
]u~x,t !

]t U
RB

. ~15!
1228N. Gauthier and P. Rochon
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Equations~14! and ~15! form the complete set of indepen
dent boundary conditions for the wave amplitudes in a s
cific situation. Note that Eq.~14! is identical to the boundary
condition that is obtained by arguing that, for transve
waves, the slopes of the string must match across the bo
ary to avoid having the mass element atx move laterally; see
Ref. 8, for example. Unfortunately, this kind of reasoning
not as convincing for longitudinal waves in a slender ro
there is a necessity for lateral motion. Also note that Eq.~15!
relates the local time rate of change of the net displaceme
whereas the usual requirement is that the net amplitude
continuous across the junction. It is easily shown by integ
ing over time, however, that these requirements are equ
lent. The time integral of Eq.~15! indicates thatu(x,t)uLB

2u(x,t)uRB andu(x,t0)uLB2u(x,t0)uRB must be equal at al
times. Consequently, if it is assumed that the net displa
ments across the boundary are equal at some initial timet0 ,
then these displacements must be equal for any subseq
time t.

III. ENERGY AND MOMENTUM FOR A SYSTEM
WITH A JUNCTION

Consider a junction atx50 between two slender, uniform
media. The linear mass density for this junction is

r~x!5r1 , 2`<x<0,
~16!5r2 , 0,x<1`,

wherer1 and r2 are uniform and constant. A small ampl
tude wave pulse described by

uI~x,t !5 f ~ t2x/n1!, ~17!

is sent fromx52` at timet→2` and eventually interacts
with the junction. As is well known, general solution of th
wave equation for this case gives one reflected and one tr
mitted wave pulse and can be represented as8

uR~x,t !5ARf ~ t1x/n1!, ~18!

uT~x,t !5ATf ~ t2x/n2!, ~19!

respectively, wheren1 andn2 are the phase velocities in th
corresponding media;AR andAT are unknown amplitudes to
be determined from the boundary conditions at the juncti

Equations~17!–~19! obviously satisfy the wave equation
Eq. ~4!, and allow us to find the unknown amplitudes,AR

andAT . To do so, note that

] f ~ t6x/n1!

]x U
x502

56
1

n1

] f ~ t6x/n1!

]t U
x502

56
1

n1

d f~ t !

dt
, ~20!

] f ~ t2x/n2!

]x U
x501

52
1

n2

] f ~ t2x/n2!

]t U
x501

52
1

n2

d f~ t !

dt
. ~21!

With the help of these results, Eq.~14! gives

12AR5
n1

n2
AT . ~22!
1229 Am. J. Phys., Vol. 72, No. 9, September 2004
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Similarly, Eq. ~15! gives

11AR5AT . ~23!

Equations~22! and ~23! represent the same relation b
tween the amplitudes as that given by the standard appro
and are readily solved to give

AR5S 12
n1

n2
D Y S 11

n1

n2
D , AT52YS 11

n1

n2
D , ~24!

which are the usual results for the reflected and transmi
pulses, respectively.

We now calculate the mechanical momentum and ene
associated with each pulse. Then we will show that the a
braic sum of the individual momenta and of the individu
energies are two separate constants of motion, as expec

The mechanical momentum of each pulse is given by
tegrating Eq.~2! as follows:

PI~ t !5E
2`

0

dxr1

] f ~ t2x/n1!

]t

52r1n1 È t

dz
d f~z!

dz
5r1n1@ f ~`!2 f ~ t !#, ~25!

PR~ t !5E
2`

0

dxr1AR

] f ~ t1x/n1!

]t

5r1n1ARE
2`

t

dz
d f~z!

dz
5r1n1AR@ f ~ t !2 f ~2`!#,

~26!

PT~ t !5E
0

`

dxr2AT

] f ~ t2x/n2!

]t

52r2n2ATE
t

2`

dz
d f~z!

dz

5r2n2AT@ f ~ t !2 f ~2`!#. ~27!

A change of variable of the typez5t6x/n, with time t
assumed to be finite, was made to obtain Eqs.~25!–~27!. It is
clear that the momentum of each wave pulse varies explic
with the time. We now show that the net instantaneous m
mentum is a constant of motion.

At time t, the net momentum,PN(t), is the algebraic sum
of the instantaneous momenta of the three individual puls
as given in Eqs.~25!–~27!. We have that

PN~ t ![PI~ t !1PR~ t !1PT~ t !

5r1n1F ~ f ~`!2 f ~ t !!1AR~ f ~ t !2 f ~2`!!

1
r2n2

r1n1
AT~ f ~ t !2 f ~2`!!G

5r1n1F f ~`!2 f ~2`!1~ f ~2`!

2 f ~ t !!S 12AR2
n1

n2
ATD G

5r1n1@ f ~`!2 f ~2`!# ~28!

where
1229N. Gauthier and P. Rochon
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r2n2

r1n1
5

n1

n2
, ~29!

and

12AR5
n1

n2
AT ~30!

were used; see Eqs.~3! and~22!, respectively. The total me
chanical momentum of the system is equal to a constant
is thus conserved.

We now turn to the energy of the individual pulses,EI(t),
ER(t), and ET(t), and obtain the total instantaneous m
chanical energy of the entire system,EN(t). First consider
the total energy in the system in the regionx,0:

Ex,0~ t !5
1

2 E2`

0

dxrF S ]u

]t D
2

1n2S ]u

]xD 2G
5

1

2 E2`

0

dxr1F S ]uI

]t
1

]uR

]t D 2

1n1
2S ]uI

]x
1

]uR

]x D 2G
5

1

2 E2`

0

dxr1F S ]uI

]t D 2

12S ]uI

]t D S ]uR

]t D1S ]uR

]t D 2

1n1
2S S ]uI

]x D 2

12S ]uI

]x D S ]uR

]x D1S ]uR

]x D 2D G . ~31!

Note from Eqs.~17! and ~18! that

]uI

]t
52n1

]uI

]x
,

]uR

]t
51n1

]uR

]x
. ~32!

We find that

Ex,0~ t !5E
2`

0

dxr1F S ]uI

]t D 2

1S ]uR

]t D 2G . ~33!

The cross terms represent the effects of interference of
two pulses. The energy is unaffected by the process, in c
trast with the strong effects of this interference on the
local displacement of the medium.

The energy of each pulse is thus

EI~ t !5E
2`

0

dxr1S ]uI

]t D 2

5r1n1@ I 02I 1~ t !#, ~34!

ER~ t !5E
2`

0

dxr1S ]uR

]t D 2

5r1n1AR
2@ I 01I 1~ t !#, ~35!

ET~ t !5E
0

`

dxr2S ]uT

]t D 2

5r2n2AT
2@ I 01I 1~ t !#, ~36!

after introducingz5t6x/n for each case, as done for th
momentum integrals. By definition,

I 0[E
0

`

dzS d f~z!

dz D 2

~37!

I 1~ t ![E
0

t

dzS d f~z!

dz D 2

. ~38!

The energy of each pulse varies in time. We now show t
the total instantaneous energy is a constant of motion.

At time t, the total mechanical energy of the pulses is
1230 Am. J. Phys., Vol. 72, No. 9, September 2004
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EN~ t ![EI~ t !1ER~ t !1ET~ t !

5r1n1F ~ I 02I 1~ t !!1AR
2~ I 01I 1~ t !!

1
r2n2

r1n1
AT

2~ I 01I 1~ t !!G
5r1n1F I 0S 11AR

21
n1

n2
AT

2D1I 1~ t !

3S 211AR
21

n1

n2
AT

2D G52r1n1I 0, ~39!

where Eqs.~22!, ~23!, and ~29! were used. The sum of th
individual energies is a constant: the net energy is thus c
served.

We now suggest two specific distributions for solution
the interested reader and present them as exercises.

Let the incoming pulse be described by the followin
shape-functions:

f ~z!5I
g2

z21g2
~Lorentzian!, ~40!

f ~z!5Ie2s2z2/2 ~Gaussian!. ~41!

The parametersg ands characterize the width of each puls
and I determines the maximum value of the incident pu
amplitudes. These shapes are of particular interest bec
the time-dependent part of the momentum and of the ene
integrals can be evaluated exactly for the incident, reflec
transmitted, and net pulses.

Problem 1: Use the above shapes to show that the integ
of Eqs.~37! and ~38! are as follows:

I 05
pI 2

8g
, ~42!

I 1~ t !5
I 2

4 F t

~ t21g2!
S 11

2g2

3~ t21g2!
2

8g4

3~ t21g2!2D
1

1

g
tan21S t

g D G , ~43!

for the Lorentzian, and

I 05I 2s4E
0

`

dzz2e2s2z2
5

I 2sAp

4
, ~44!

I 1~ t !5I 2s
Ap

4 Ferf~st !2
2st

Ap
e2s2t2G , ~45!

for the Gaussian. In Eq.~45!, erf(z) is the error function.
Problem 2: Obtain explicit expressions for the moment

and the energy contributions of each individual pulse~inci-
dent, reflected, etc.!, as a function of time.

IV. CONCLUDING REMARKS

We have re-examined the linear theory of wave propa
tion in an elastic string under uniform tension or in a slend
elastic rod characterized by a uniform Young’s modulus. O
perspective differs from the standard approach, in that
1230N. Gauthier and P. Rochon
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first established two continuity equations, one for the m
chanical energy and the other for the mechanical moment
It was shown that these continuity equations lead directly
the boundary conditions for the wave amplitudes. The firs
these conditions is that the gradients of the net wave
placement must match across a boundary. This conditio
identical to that obtained by the standard approach. The
ond condition states that the local time rate of change of
net wave displacement must be equal across the boun
This condition differs from the condition that is normal
used, that is, the net displacements of the wave must be e
across a boundary. However, it was shown that these s
ments, although different, are fully compatible with one a
other.

The case of a small-amplitude incident pulse of arbitr
shape at a junction between two media with different lin
mass density also was examined. The new boundary co
tions were shown to lead to the correct relative amplitu
for the reflected and for the transmitted pulses. Explicit
pressions for the instantaneous mechanical energy and
the instantaneous mechanical momentum of the incident
flected, and transmitted pulses also were obtained, and
net mechanical energy and the net mechanical momentu
1231 Am. J. Phys., Vol. 72, No. 9, September 2004

Downloaded 08 Apr 2013 to 129.241.49.215. Redistribution subject to AAPT 
-
m.
o
f

s-
is
c-
e
ry.

ual
te-
-

y
r
di-
s
-
for
e-
he
of

this three-pulse system were shown to be separate cons
of motion.

We hope that the present approach will encourage aut
and teachers to discuss a subject that has been neglect
textbooks and in the pedagogical literature, namely, the
chanical momentum that is carried by waves in linear the
of the wave equation.
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SCIENTIFIC ATMOSPHERE

It if difficult to describe for the general reader the intellectual flavor, the feeling, of a scientific,
‘‘atmosphere.’’ There is no specific English word for this impression. Odor and smell have un-
pleasant connotations; perfume is artificial; aura is suggestive of a mystery, of the supernatural.
The younger scientists did not have much of an aura, they were bright young men, not geniuses.
Perhaps only Feynman among the young ones had a certain aura.

Stanislaw M. Ulam,Adventures of a Mathematician~Charles Scribner’s Sons, 1983!. Reprinted inThe World Treasury of
Physics, Astronomy, and Mathematics~Little, Brown and Company, Boston, MA, 1991!, p. 717.
1231N. Gauthier and P. Rochon

license or copyright; see http://ajp.aapt.org/authors/copyright_permission


