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The first attempt to generate musical sounds by solving the equations of vibrating strings by 
means of finite difference methods (FDM) was made by Hiller and Ruiz [J. Audio Eng. Soc. 19, 
462472 (1971)]. It is shown here how this numerical approach and the underlying physical 
model can be improved in order to simulate the motion of the piano string with a high degree 
of realism. Starting from the fundamental equations of a damped, stiff string interacting with a 
nonlinear hammer, a numerical finite difference scheme is derived, from which the time histories 
of string displacement and velocity for each point of the string are computed in the time domain. 
The interacting force between hammer and string, as well as the force acting on the bridge, are 
given by the same scheme. The performance of the model is illustrated by a few examples of 
simulated string waveforms. A brief discussion of the aspects of numerical stability and 
dispersion with reference to the proper choice of sampling parameters is also included. 

PACS numbers: 43.75.Mn 
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INTRODUCTION 

The vibrational properties of a musical instrument-- 
like any other vibrating structure•can be described by a 
set of differential and partial differential equations derived 
from the general laws of physics. Such a set of equations, 
which define the instrument with a higher or lesser degree 
of perfection, is often referred to as a physical model. Due 
to the complex design of the traditional instruments, which 
in most cases also include a nonlinear excitation mecha- 

nism, no analytical solutions can, however, be expected 

from such a set of equations. Consequently, it is necessary 
to use numerical methods when testing the validity of a 
physical model of a musical instrument. 

Once the numerical difficulties have been mastered, a 
simulation of a traditional instrument by a physical model 
means that the influence of step-by-step variations of sig- 
nificant design parameters like string properties, plate res- 
onances, and others, can be evaluated. Such a systematic 
research method could hardly be achieved when working 
with real instruments, not even with the assistance of 

skilled instrument makers. In the future, it is hoped that 
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advanced physical models, which reproduce the perfor- 
mance of traditional instruments with high fidelity, can be 
used as a tool for computer-aided-lutherie (CAL). 

Various numerical methods have been used extensively 
for many years in other branches of acoustics, for example 
in underwater acoustics where the goal is to solve the elas- 
tic wave equation in a fluid. I In musical acoustics, it is of 
great value to obtain a solution directly in the time domain, 
since it allows us to listen to the computed waveform di- 
rectly, and judge the realism of the simulation. Among the 
large number of numerical techniques available, finite dif- 
ference methods (FDM) are particularly well suited for 
solving hyperbolic equations in the time domain. 2 For sys- 
tems in one dimension, like the transverse motion of a 
vibrating string, the use of FDM leads to a recurrence 
equation that simulates the propagation along the string. 3 
The generality of FDM makes it possible to also use them 
for solving problems in two and three dimensions. The 
main practical limit then is set by the rapidly increasing 
computing time. 

Historically, Hiller and Ruiz were the first to solve the 
equations of the vibrating string numerically in order to 
simulate musical sounds? The model of the piano string 
and hammer used by these pioneers was, however, rather 
crude in view of the improvements in piano modeling over 
the last two decades? For example, the crucial value of the 
contact duration between hammer and string, in reality 
being a result of the complex hammer-string interaction, 
was set beforehand as a known parameter. 

Some years later, Bacon and Bowsher developed a dis- 
crete model for the struck string where the hammer was 
defined by its mass and its initial velocity. 6 Displacement 
waveforms were computed for both hammer and string at 
the contact point. Their model can be regarded as the first 
serious attempt to achieve a realistic description of the 
hammer-string interaction in the time domain. However, 
several effects were not modeled in detail. The damping 
was included as a single fluid (dashpot) term, and the 
stiffness of the string was neglected. The model assumed 
further a linear compression law of the felt. From a nu- 
merical point of view, no attempts were made to investigate 
stability, dispersion, and accuracy problems. 

More recently, Boutilion made use of finite differences 
for modeling a piano string without stiffness, assuming a 
nonlinear compression law and the presence of a hysteresis 
in the felt. He investigated, in particular, the hammer- 
string interaction for two notes, in the bass and mid range, 
respectively. 7 

In all three papers mentioned, the numerical velocity, 
i.e., the ratio between the discrete spatial and time steps, 
was set equal to the physical transverse velocity of the 
string. It has been shown that this particular choice is 
possible for an ideal string only, and that the numerical 
scheme becomes unstable if stiffness, or nonlinear effects 
due to large vibration amplitudes, are taken into account in 
the model. 3 

At about the same time, Suzuki presented an alterna- 
tive for simulating the motion of hammer and string, using 
a string model with lumped elements struck by a hammer 

with a nonlinear compression characteristic. He investi- 
gated, in particular, some details of the hammer-string 
interaction, and the efficiency in the energy transmission 
from hammer to string. The effect of string inharmonicity 
was taken into account in a simplified manner by slightly 
modifying the values of the lumped string compliances? 

In a recent paper, Hall made use of another approach 
for simulating a stiff string excited by a nonlinear hammer, 
which he named a standing-wave model. His method can 
be regarded as a seminumerical approach, since it partially 
makes use of analytical results. By this method, he inves- 
tigated systematically the effects of step by step variations 
of hammer nonlinearity and stiffness parameters, among 
other things? 

In comparison with the earlier studies mentioned 
above, the present model has the feature of a detailed mod- 
eling of the piano string and hammer as closely as possible 
to the basic physical relations: Our model is entirely based 
on finite difference approximations of the continuous equa- 
tions for the transverse vibrations of a damped stiff string 
struck by a nonlinear hammer. The blow of the hammer is 
represented by a force density term in the wave equation, 
distributed in time and space, and the damping is fre- 
quency dependent. 

The presentation is organized as follows. In Sec. I, the 
continuous model for the damped stiff string is briefly re- 
viewed, with regard to the wave equation, and to the equa- 
tions governing the hammer-string interaction. In Sec. If, 
it is shown how this theoretical background can be put into 
a discrete form for time-domain simulations. Some impor- 
tant aspects of numerical stability, dispersion, and accu- 
racy are briefly discussed here, in particular the selection of 
the appropriate number N of spatial steps as a function of 
the fundamental frequency f• of the string, for a given 
sampling frequency f•. A detailed treatment of the numer- 
ical aspects can be found in a previous paper by the first 
author. • In Sec. III, the structure of the computer program 
is presented, and a few examples of the capabilities of the 
model for representing the wave propagation on the string 
are given. 

A thorough evaluation of the model by systematic 
comparisons between simulated and measured waveforms 
and spectra was left as a separate study. That work will 
also include a systematic exploration of the influence of the 
hammer-string parameters on the piano tone. 

I. THEORETICAL BACKGROUND 

A. Wave propagation on a damped stiff string 

The present model describes the transverse motion of a 
piano string in a plane perpendicular to the soundboard. 
The vibrations are governed by the following equation: 

2-2 oy -- •+2b 3 •---•+f(x,xo,t), 
(1) 

in which stiffness and damping terms are included. The 
stiffness parameter is given by 

e=•(ES/TL2). (2) 
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It has been shown that this stiffness term, which is the 
main cause of dispersion in piano strings, especially in the 
lowest range of the instrument, gives rise to a "precursor" 
which precedes the main pulses in the string waveform. 
Possibly it could also affect the perceived attack 
transient. •0 

The two partial derivatives of odd order with respect 
to time in Eq. (1) simulate a frequency-dependent decay 
rate of the form, 

a= 1/r=b• +b3o 2. (3) 

As a consequence, the decay times of the partials in the 
simulated tones will decrease with frequency, as can be 
observed in real pianos. l• It must be pointed out that this 
simplified formula yields a smooth law of damping which 
is only a fair approximation of the reality. The constants b• 
and b3 in Eq. (3) were derived from experimental values 
through standard fitting procedures, and it is assumed that 
these empirical laws account globally for the losses in the 
air and in the string material, as well as for those due to the 
coupling to the soundboard. No attempts were made to- 
ward an accurate modeling of each individual physical pro- 
cess that causes energy dissipation in the strings. The form 
of Eq. (3) is particularly attractive as it has been shown in 
previous studies that the time response of mechanical sys- 
tems is stable and cau•al for laws of damping involving 
even order polynomials in frequency. t2 

The model does not include the mechanisms which 

give rise to two different decay times in the piano tone, 
"prompt sound" and "aftersound. "•3 This effect is mainly 
due to string polarization, differences in horizontal and 
vertical soundboard admittance, and "mistuning" within a 
string triplet. 

The force density term f(x•Xo,t) in Eq. ( 1 ) represents 
the excitation by the hammer. This excitation is limited in 
time and distributed over a certain width. It is assumed 

that the force density term does not propagate along the 
string, so that the time and space dependence can be sep- 
arated, 

f(x,x o,t) = f l•( t)g(x,xo). (4) 

From a physical point of view, it is clear that the di- 
mensionless spatial window g(x,x o) accounts for the width 
of the hammer. Within the context of numerical analysis, it 
is interesting to notice that the use of such a smoothing 
window eliminates the artifacts that occur in the solution 

(in the form of strong discontinuities), when the excitation 
is concentrated in a single point. 

The density term fu(t) is related to the time history of 
the force Fn(t) exerted by the hammer on the string by the 
following expression: 

where the length of the string segment interacting with the 
hammer is equal to 28x. 

B. Initial and boundary conditions 

For the struck string, it is now well known that the 
force F•t(t) is a result of a nonlinear interaction process 
between hammer and string. 5 In our model, the motion of 
the string starts at t=0 as the hammer with velocity VH0 
makes contact with the string at the striking position x 0. It 
is assumed that F•(t) is given by a power law, 9 

Ft.(t) =KI */(t) --Y(Xo,t) [P, (6) 

where the displacement r/(t) of the hammer head is given 
by 

Mu d----•= --F•(t), (7) 
and where the stiffness parameters K and p of the felt are 
derived from experimental data on real piano hammers. 
The losses in the felt are neglected. 

In the computer program, the interaction process ends 
when the displacement of the hammer head becomes less 
than the displacement of the string at the center of the 
contact segment (x0). This yields, among other things, the 
contact duration between hammer and string. 

The string is assumed to be hinged at both ends, which 
corresponds to the following four boundary conditions? 4 

y(O,t) =y(L,t) =0 

and (8) 

• (0,t)=•I x (L,t)=O. 
These boundary conditions do not correspond strictly 

to the string terminations in real pianos, and will be recon- 
sidered in a future work. 

The continuous model of piano strings developed in 
this section forms the basit of our numerical model. Em- 

phasis will now be put on the computational methods used 
for solving the equations, and the obtained algorithms will 
be discussed. 

II. TIME-DOMAIN SIMULATIONS 

A. String model 

The equations of motion for the string and hammer 
presented in Sec. I are formulated in discrete form using 
standard explicit differences schemes centered in space and 
time? The main variable is the transverse string displace- 
ment y(x,t) which is computed for the discrete positions 
xi= i fix, and at discrete time steps t n = n At. Values of the 
hammer position r/(t) are computed, using the same time 
grid and the same increment At. In the following, the sim- 
plified notation, 

y( x,t ) -• y( xi,t,) -, y( i,n ), (9) 

will be used for convenience 

In a second stage, the velocity and acceleration of the 
hammer, and of each discrete point of the string, are de- 
rived from the corresponding displacement values by 
means of finite differences centered in time. Finite differ- 
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TABLE I. Coefficients of the recurrence equation for the damped stiff 1000 
string. 

a I = [2 -- 2r 2 + b3/At- 6•N:r2]/D 
a 3 = [r2( 1 +4eN2)]/D 
a s = [-- b3/At]/D 
where 

D= 1 +b•At+2b3/At 

a2= [- 1 +b•At+2b3/At]/D 
a 4 = [b3/At-- 

and r=cAt/Ax 

ences centered in space are used for computing the force 
transferred from one segment of the string to its adjacent 
segments. This gives, in particular, the force Fa(t) exerted 
by the string on the bridge. The interaction force between 
the hammer and the string is obtained in a straightforward 
way by putting Eq. (6) into a discrete form. 

These numerical schemes lead to convenient recur- 

rence equations where, for each point i, the variable under 
examination at a future time step (n + 1 ) is a function of 
the same variable at the same position i and at adjacent 
positions (i--2,i--l,i+l,i+2) at present and past time 
steps (n, n'-- 1, and n-- 2). The recurrence equation for the 
transverse displacement of a damped stiff string corre- 
sponding to Eq. (1), is given by 

y(i,n+ 1 ) =a•(i,n) +azv(i,n- 1 ) 

+a3[Y(i+ l,n) + y(i- 1,n) ] +a4[y(i+ 2,n) 

+y(i- 2,n) ] +a 5 [y(i+ l,n- 1 ) 

+y(i-- 1,n-- 1 ) +y(i,n-2) ] 

+ [At2NFn(n)g(i, io) ]/Ms, (10) 

where the coefficients a• to a 5 are given in Table I. 
Before starting the computation, an appropriate num- 

ber (N) of spatial steps must be selected. For a standard 
explicit finite difference scheme, it has been shown theoret- 
ically that this selection is critical for stability and numer- 
ical dispersion. 3 In practice, the stability condition pro- 
vides us with a maximum number (Nmax) of discrete string 
segments, (i.e., with a minimum segment length AXmin) , 
assuming that the (dimensionless) stiffness parameter (e), 
the fundamental frequency (f•) of the string, and the sam- 
pling frequency (re) are given. The stability condition'ran 
be written as 

Nma x ={ [ -- 1 + ( 1 + 16e•)1/2]/8E}1/2, ( 1 1 ) 
where 

y=fo/2f•. (12) 

If the stiffness is neglected (e=0), then Eq. (11) reduces 
to 

Nmax=y. (13) 

In addition to these stability requirements, the prob- 
lem of numerical dispersion must also be taken into ac- 
count. It has been shown that some unwanted dispersive 
effects (grid dispersion) may be present in the solution if 
an explicit finite difference scheme is used for solving the 
stiff string equation) This numerical dispersion should not 

1oo 

lO 

(b) 

(el AH L (•__ E 
1 

lO 100 1oo0 10o0o 
FUNDAMENTAL FREQUENCY (Hz) 

FIG. 1. Maximum number of spatial steps Nma x as a function of the 
fundamental frequency ft of the string for different values of the stiffness 
parameter. (a) e= 10'-8; (b) e= 10-6; (c) •= 10 4. The sampling fre- 
quency is f•=48 kHz. 

be confused with the intrinsic physical dispersion due to 
the stiffness term in Eq. (1). As a result of the grid dis- 
persion, the eigenfrequencies of the string and the inhar- 
monicity are slightly underestimated for a given stiffness 
parameter. Fortunately, this applies primarily to the fre- 
quency range just below the Nyquist frequency (re/2). By 
using a sufficiently high sampling rate so that the string 
partials near the Nyquist frequency contain no significant 
energy, the effects of this underestimation can be made 
inaudible. Further, in order to limit the dispersion as much 
as possible, N should be equal to the highest possible inte- 
ger value which is immediately lower than Nraax. 

Usually, the actual sampling frequency fe, is deter- 
mined by the audio equipment. Therefore, it was decided 
to select, in this particular experiment, one of the standard 
values (32, 44.1, and 48 kHz) for the output sampling rate. 
Figure 1 shows Nm• • as a function of the fundamental 
frequency (f•) of the string, at a sampling rate of fe•48 
kHz for three different values of the stiffness parameter. 
The three decades for f• shown in the figure cover the 
range of a grand piano. Notice that N•a • is not directly 
dependent on the string length, but rather on the ratio 
between this parameter and the transverse wave velocity. 

In practice, the computation will be made at a lower 
sampling rate (say f,= 16 kHz) for notes with fundamen- 
tal frequency below 100 Hz, in order to limit N to an 
acceptable value. The synthesized signals will be then in- 
terpolated by a factor 2 or 3 and 'played back at a standard 
sampling rate. At the other end, oversampling will be nec- 
essary for the highest notes of the instrument (typically for 
f• greater than 1 kHz, i.e., for note C6 and above), since 
truncation errors may appear in the solution for too small 
values of N. In this range, the computations were made 
with a sampling rate of 64 kHz, or even 96 kHz for note 
C7, and the signals were played back after low-pass filter- 
ing and decimation. 

B. Modeling the initial and boundary conditions 

At time t=0 (n----O), the hammer velocity is assumed 
to be equal to Vn0, and its displacement and the force 
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exerted on the string are taken equal to zero. For the sake 
of simplicity, only the simplest case, where the string is 
assumed to be at rest at the origin of time, will be presented 
below. Note, however, that the model can handle any ini- 
tial condition. With the string at rest at t=0, 

y(i,0) =0. (14) 

At time t=At (n=l), the hammer displacement is 
given by 

a7(1) = Vm0 At. (15) 

At that time, Eq. (10) generally cannot be used for 
computing the string displacement, since four time steps 
are involved in the general recurrence equation. One solu- 
tion, however, consists in assuming that the string is at rest 
for the first three time steps. Another technique used here 
is to estimate y(i, 1 ) by the approximated Taylor series: 2 

y(i, 1 ) = [y(i+ 1,0) +y(i-- 1,0) 1/2. (16) 

Thus the force exerted by the hammer on the string 
becomes 

F•(1) =K I•/(1)--y(i0,1)I p. (17) 

This enables us to compute a first estimate of the dis- 
placement y(i,2). In order to limit the time and space de- 
pendence for n =2, a simplified version ofEq. (10) is used, 
where the stiffness and damping terms are neglected. This 
yields 

y(i,2) =y(i- 1,1 ) +y(i+ 1,1 ) --y(i,O) 

+ [ AI2NFn( 1 )g(i, io) ]/Ms. (18) 

Similarly, the hammer displacement •/(2) is given by 

•(2)=2•(I)--•i(O)--[At2Fn(1)]/Mn, (19) 
and the hammer force is now written as 

Fn(2) =K 1(2) --y(i0,2)I p. (20) 

At this stage, one may ask if it is fully justified to 
compute the displacements in Eqs. (18) and (19) at time 
n=2 using the value of the force at time n = 1, i.e., with a 
time delay equal to At. This follows from the implicit form 
of Eq. (20), which requires the values of the displacements 
in order to compute the hammer force. 

Normally, the effects of this approximation can be ne- 
glected, provided that the sampling frequency is sufficiently 
high. In that case, only the high-frequency content of the 
synthesized signal will be affected by the delay, and the 
influence on the computations will be small. An accurate 
estimation of the effect can be obtained by iterating the 
procedure described above, and calculating a second esti- 
mate of the displacements using Eq. (20), which in tu rn 
leads to a more accurate estimate of the hammer force. 

This procedure can be repeated until no significant differ- 
ences between successive results are observed. In our sim- 

ulations, the algorithm converged rapidly, and the differ- 
ences between the first and second estimates for 

displacements and forces were never greater than 1% in 

0.5 
V V V V V V V V vlvvvvvvvvvvvv 

• -1 
Z 0 10 20 30 

• ms 
40 50 60 

FIG. 2. Illustration of a repetition of a note showing computed string 
displacement (at 40 mm from the hammer, bridge side). First blow of 
hammer at t=0 with string initially at rest, followed by a repeated blow 
at t= 32 ms with string in motion. 

the worst cases. It was therefore decided to calculate only 
the first estimate of the variables, in order to limit the 
computational time. 

Once the values of the displacements are known for 
the first three time steps, it is possible to start using the 
general recurrence formula given in Eq. (10), where the 
future displacement y(i,n+ 1 ) is computed assuming that 
the present force Fn(n) is known. The hammer leaves the 
string when 

ß /(n+ 1) (y(io,n+ 1), (21) 

after which time the string is left to free vibrations. In this 
case, Eq. (10) still applies, but the force term is tempo- 
rarily removed. By further comparisons of string and ham- 
mer displacements, the possibility of hammer recontact 
can be taken into account. This latter feature has been 

observed however only for the low bass strings. 
An attractive feature of the method is that there is no 

need to assume that the string initially is at rest. The force 
density term f(x,xo,t) can be introduced at any time in the 
wave equation, whatever the vibrational state of the string. 
Thus the model makes it possible to simulate not only 
isolated tones, but also a musical fragment with realistic 
transitions between notes (see Fig. 2). In this case, re- 
peated notes are obtained by re-initializing the hammer 
position to zero before striking the moving string. This 
feature is not available in today's commercial synthesizers. 

As for the boundary conditions, the numerical expres- 
sions corresponding to hinged ends case in Eq. (8) are 
straightforward and yield: 

y(0,n)=0 and y(N,n)=O, (22) 

y(- 1,n) = --y(1,n) and 
(23) 

y(N+ 1,n) = --y(N-- 1,n). 

If the load of the soundboard at i=N is modeled by a 
frequency-dependent admittance, then the second condi- 
tion in Eq. (23) can conveniently be replaced by the dis- 
crete form of the appropriate differential equation. This 
refinement has already been successfully applied to the 
guitar? 

The conditions given in Eq. (23) are important for 
deriving specific recurrence equations for the points i= 1 
and i=N--1 which are close to the string terminations. 
Due to the stiffness term, Eq. (1) is of the fourth-order in 
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FIG. 3. Computed waveforms for piano string C4 at four positions. 
String, bridge side (a) string displacement (at 40 mm t¾om the hammer), 
(b) string velocity. String, agrafie side (c) string displacement (at 40 
mm from the hammer); (d) string velocity. Striking point (e) string 
displacement, (f) string velocity. (g) hammer force. Bridge (h) force 
transmitted to the bridge. 

space, and thus the recurrence equation for the point i will 
depend on the vibrational state of points i--2 to i+2. 
Therefore, it is necessary to know the values of the dis- 
placements y( -- 1,n) and y(N+ 1,n) in order to compute 
the solution at i= 1 and i=N-1, respectively. Because 
i= - 1 and i=N+ 1 do not belong to the "physical" string, 
Eq. (23) must be used for replacing y(- 1,n) and y(N 
+ 1,n) by expressions involving only the values of the dis- 
placements for i within the interval [0,N]. 

Ill. STRUCTURE AND PERFORMANCE OF THE 
COMPUTER PROGRAM 

The simulation program is written in Turbo-Pascal, 
and runs on a 80486 based Personal Computer DEC sta- 
tion 425 PC677-A3. At a clock speed of 25 MHz, it takes 
about 100 s to obtain 1 s of sound at a sampling frequency 
of 32 kHz, with the string divided into N= 100 spatial 
steps. This value is a typical order of magnitude for the 
computing time, although it may vary slightly from one 
string to the other. 

The main part of the program holds the model of the 
string motion, described in the previous section. This part 
is linked with data files which contain the values of the 
hammer and string parameters actually used in the simu- 
lations. Some of the parameters were measured by the au- 
thors, while others were extracted from the literature. 9'15'17 
The stiffness parameters K and p of the hammer felt, and 

STRING VELOCITY 

A H B 

FIG. 4. Simulated velocity profile of a piano string (C4) during the first 
4 ms after the blow. The time step between successive plots is 62.5 its. The 
string terminations are indicated by A (agrafie) and B (bridge), and the 
striking point by H (hammer). 

the damping coefficients b• and b 3 of the string, were de- 
rived from experimental data by means of standard curve- 
fitting procedures. 

In its standard executable version, the program starts 
with an interaction with the user, requesting the sampling 
frequency (in kHz), the fundamental frequency (in Hz), 
and the duration of the computed note (in s). This enables 
the program to compute the number (N) of spatial steps, 
using Eqs. ( 11 )-(13). This procedure is followed by the 
computation of the first three time steps (n =0 to n=2), as 
described in the previous section, using Eqs. (14)-(20). 
Then, the recurrence parameters of the damped stiff string 
given in Table I are calculated once for all. For n•3, the 
program computes the hammer force F•(n), string dis- 
placement y(i,n), and hammer displacement, •/(n), in par- 
allel. If the condition in Eq. (21) is met, the force term is 
removed from the recurrence scheme in Eq. (10) before 
the computations proceed. 

At each time step, the program can provide a complete 
set of signals, adding four variables--v(i,n), the string ve- 
locity at each point of the string, FB(n), the force exerted 
by the string on the bridge, vu(n), hammer velocity, and 
art(n) hammer acceleration--to y( i,n ), •l( n ), and F•( n ), 
which are the three principal variables in the computa- 
tions. Examples of waveforms generated by the model for 
note C4 are shown in Fig. 3. 

A great advantage of using a finite difference method is 
that each physical quantity (displacement, velocity, force) 
is directly available for all discrete points at each time step. 
In this way, it becomes straightforward to plot the state of 
the string at successive instants, in order to obtain a view of 
the wave propagation along the string. This feature is il- 
lustrated in Fig. 4, which shows the velocity profile of a C4 
string during the first 4 ms after the blow of the hammer. 

1117 J. Acoust. Soc. Am., Vol. 95, No. 2, February 1994 A. Chaigne and A. Askenfelt: Simulations of piano string 1117 



FIG. 5. Comparison of string velocities at the bridge side of the striking 
point (40 mm from the hammer), for a mid range note (C4) played 
mezzoforte, simulated (dashed) and measured (full line)? 6 
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Scientifique (CNRS). The project was further supported 
by the Swedish Natural Science Research Council (NFR), 
the Swedish Council for Research in the Humanities and 

Social Sciences (HSFR), the Bank of Sweden Tercente- 
nary Foundation, and the Wenner-Gren Center Founda- 
tion. 

In particular, the propagating wave front and its reflection 
at the bridge can be clearly seen. Similar plots of the wave 
propagation on a piano string have been presented by Su- 
zuki, however, using a string model with lumped 
elements? 

A detailed test of the model by comparisons between 
simulated and measured waveforms will be the topic of a 
separate study. An example of the strength of the model is 
given in Fig. 5, which compares string waveforms for the 
note C4. It can be seen that our model reproduces the 
characteristics of the measured waveform convincingly, us- 
ing measured values of string and hammer parameters. The 
small discrepancies which can be observed in the actual 
timing relations between the pulses are mostly due to slight 
differences in observation points. 

IV. CONCLUSION 

The numerical model presented in this paper has in- 
teresting features, which allow a simulation of a piano 
string very closely to the basic physical relations. The 
method is time efficient, and the numerical advantages and 
limitations have been thoroughly investigated and are well 
documented. The first examples and comparisons with 
measurements indicate that the model generates wave- 
forms and spectra which closely resemble the signals ob- 
served in real pianos. Although all details in the design of 
the piano still are not modeled as realistically as desired (in 
particular the boundary conditions), we consider the 
model to be a promising tool for exploring the space of 
string-hammer parameters and their influence on piano 
tone. 
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