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NOTES AND DISCUSSIONS

Avoiding a trap in degenerate perturbation theory

Lai-Keat Chen?
Department of Natural Sciences, National Institute of Education, Nanyang Technological University,
Singapore 637616

(Received 9 April 2003; accepted 9 October 2003
[DOI: 10.1119/1.1630335

The plane rotator described by the Hamiltonian where the quantum numbens=0,1,2,... andm=0,*=1,
L2 +2,...1. The unperturbed wave functions are the spherical
H0=2—|Z (1)  harmonicsY,(6,¢)=(r|l,m). Except for the statef,0),
all other states are twofold degenerate. For the s{ai€s
with the perturbation first-order non-degenerate perturbation theory gives
H'=pecog¢) 2

<1>—|0cL2|0——||+1h2 9
often is used as an example of perturbation th&drin an (1.0 | ) ( ) ©

undergraduate quantum mechanics course. INBgp is the
electric dipole moment of the rotator ardis the applied
electric field. Except for the ground state, all other states are | 2_1p| 2_p| 2|2 | 2) (10)
twofold degenerate. It was pointed out many years ago that ~ ~ 2T
non-degenerate perturbation theory gives the second-orderhere L, and L_ are the usual raising and lowering
energy correction 4s operators.

R 1 pPel For each degenerate pair of stafesn) and|l,—m), we

EP=3, -

Equation(9) can be readily obtained by using the identity

— 3) should construct the 22 matrix with elements
kzn EW-E)  #2(4n?-1) (I,m’[cLZ|l,m") and diagonalize the matrix to obtain the
first-order correction to the energy levels. These matrix ele-

foralln, n=0,x1%2,.... The answer given in E(S) hap- ments can be easily calculated with the aid of Et) to
pens to be correct fan+ 1. Although the second-order per- give the diagonal elements

turbation matrix is already diagon&hnd the two diagonal
elements are equalor the higher excited states, the pertur-

’ 2 AN 12712

bation matrix for the first excited statés=+ 1 is not diag- (LmfeLyll,m")=S[1(1+1)—m"*]A%, 1D
onal. The correct solution for the caserof =1 was given ]
in Ref. 5 as and the off-diagonal elements

2 2 2 2 I,m'|cL2l,m")=0 (12)

) 5Ip%e | lp*eé “ (I,m'[cLy[l,m")
642 6h2 unless
Nevertheless, the incorrect treatment appears to have m’=m’=*2. (13
persisted:’ . .
For the plane rotator, the first-order correction vanishesBecausen”=—m’ in a given degenerate subspace, the con-

Therefore, the matrix element of interest arises in seconddition in Eq.(13) is satisfied only fom’==1. Thus, if this
order degenerate perturbation theory. In many undergraduap®int is ignored, we may again be tempted to say that the
quantum mechanics courses, there is no time to discud@st-order energy correction for all states is given by Eq.
second-order degenerate perturbation theory thoroughly. 1fiL1), which has the look of non-degenerate perturbation
this note we propose a simple example in which the abovetheory. However, fom= =1, the non-vanishing off-diagonal
mentioned subtlety emerges in first order. This example wilmatrix elements are
help clarify the concept of degenerate perturbation theory for c
students in beginning quantum mechanics courses. 21 _q\—/1 2 ___ 2

Consider the Hamiltonian (L lleLyll, =)=, ~1feLy[1.1) 4|(|+1)ﬁ (14

H=Ho+H", (5)  and together with the diagonal elements given by @d)
H.=al2+plL2 ©) with m’==*1, a diagonalization of the matrix yields the
0 z first-order energy correction to the statest1) as
H'=cL?, (7) c
2
with c<a, b. The unperturbed energy levels are Z[3|(| +1)=2]h% (15
E{%=al(l+1)4%+bnm?A2, ®  and
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for the plane rotator, them= £ 1 states split in second order.
In Ref. 4, group theory was used to show that in fact all ?Electronic mail: Ikchen@nie.edu.sg
degenerate levels of the plane rotator split when the pertur+F. Constantinescu and E. Magy&Poblems in Quantum Mechani¢Ber-
bation is applied. The same splitting also occurs here, anggamon. Oxford, 1971 p. 210. o
can be seen in an elementary way. In second-order degeners: F'lgge. Practical Quantum MechanicéSpringer-Verlag, New York,

. . ; 1974, p. 110.
ate perturbation theory, the off-diagonal element involves the;’ Gf)’l, dpman V. D. Krivehenkov, V. I. Kogan, and V. M. GalitskiProb-

2 2 ; : .
factor (] ,m’|Ly|I,k><I ,k|Ly|| ,m"), wherek is an intermedi- lems in Quantum Mechanidinfosearch, London, 1960p. 274.
ate state outside the given degenerate subspace. Thus, for th® Kiang, “Pedagogical aspects of a plane rotator,” Am. J. PhiG.
second excited states specifiedrby, m”= +2, the interme- ~ 1188-11891978.

; _ oG _ : : _ %J. A Cronin, D. F. Greenberg, and V. L. Telegtiniversity of Chicago
diate St?.t_Ek 0 .WIH glve_a no.n Z€ro cor_1tr|_but|on, and there Graduate Problems in Physics with Solutig@gldison—Wesley, Reading,
fore splitting will occur in this order. Similarly, them=*+3

= >k J g . MA, 1967), p. 162. The problem considered in this text actually refers to
pair will split in third order when a product of three matrix a single, charged particle confined to move on a circle. This is equivalent
elements is involved; the state=+3 can be connected to to our plane rotator if we sdt=mR andp=gR.
the statan= — 3 via three steps, each involving a change of 6Problems.an(_i_SoIgtions in Quantum Mechaniesited by Y. K. Lim
two units in this quantum number. This line of reasoning can (Werld Scientific, Singapore, 1998p. 315 and also p. 324. Note, how-
be used to see that the degeneracy will be Sp|it forrall 7ever, that Probl_em 5017, p. 317, gives the cor_rect treatment.

. . Y. Peleg, R. Pnini, and E. Zaardchaum’s Outline of Theory and Prob-

We hope our simple example will be of Value_ for students |ems of Quantum Mechani¢dcGraw—Hill, New York, 1998, p. 196.

when they first encounter degenerate perturbation theory aneb. J. Griffiths, Introduction to Quantum Mechani¢®rentice—Hall, Upper
be helpful as a reminder of a common trap. Saddle River, NJ, 1994p. 147.

Heisenberg indeterminacy and the fine structure constant

Donald Bedford® and Peter Krumm®
School of Physics, University of Natal, Durban 4041, South Africa

(Received 12 December 2002; accepted 12 December) 2003

Two elementary connections are drawn between the Heisenberg relations for photons and for
electrons and the maximum number of protons in a nucleus that will permit a stable electron orbital.
© 2004 American Association of Physics Teachers.

[DOI: 10.1119/1.1646135

[. INTRODUCTION whereZe is the charge on the nucleusjs the fine structure

. L . constant = e?/4meyhc), wis the electron/nucleus reduced
The fine structure constanat which in its role as coupling mass angw’ K aqueE(i)nte)gel:s with’=0 andk=1. For the

constant determines the amplitude for an electron to emit or .
absorb a photon is, accordiﬁg to R. P. Feynman, “a magié“'n'm“m value ok, Z<1/a=137.035 97 for the square root

number that comes to us with no understanding by man ..M EQ- (1) to be real. o

We know what kind of a dance to do experimentally to mea-_ !t IS of historical interest that Sommerfeld first introduced
sure this number very accurately, but we don’t know whatthe fine structure constant in his relativistic treatment of el-
kind of dance to do on the computer to make this numbet‘Iptlcal . Bohrﬁ orbits in 1916 and obtained a correct
come out, without putting it in secretly?” approximatiori to Eq. (1),

It is remarkable, Feynman notwithstanding, that the in- 7202 72421n
verse of this constanZ=1/a~ 137, which sets an upper E=uc?| 1+ 11 5 E_3/4 +eoee ], 2
limit to the number of protons in the nuclei of stable atoms, 2n n

can be arrived at in two different, but very simple, “dances” yhere n=n’+k. This expansion will converge only
with Heisenberg, as we shall show in Secs. Il and IV. <1/a

There is no obvious connection between this constraint on
Il. BACKGROUND atomic structure and the Heisenberg uncertainty relations.
However, consider the following two elementary treatments
It is well but apparently not widely knovfrthat the largest  Of the interaction of an electron with a nucleus contairiing
possible nucleus that can have a single electron bound sta@otons.
hasZz=137. This limitation onZ follows directly from the
exact energy level solution to the Dirac equation with a Cou/ll. HEISENBERG AND PHOTONS

lomb potentiaf’ If the electron and the nucleus are separated by a distance
72,2 —12 r, then the Heisenberg energy/time uncertainty relation al-
E=puc?| 1+ , (1) lows for an exchange of virtual photons between them. The
{n"+ \/kz—Zzozz}2 maximum allowed virtual photon energy is
969 Am. J. Phys.72 (7), July 2004 http://aapt.org/ajp © 2004 American Association of Physics Teachers 969
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E=#/t=hclr, ©) G 1 zé

becausd=r/c is the time of flight. Equatiori3) reflects the m r 4mey (2
fact that there is an indeterminacy associated with the

vacuum state. Energy conservation can be “violated” for a

short timet so long as the “violation”E is not greater than

#/t. Whether we imagine this energy to take the form of onelhe Heisenberg momentum/position uncertainty of such an
photon of energyfE and momentunp=E/c=#/r, ornpho-  electron is jusmur =7, because the momentum uncertainty
tons each of energig/n and momentunp=~#/nr, the mo- is =~muv and the position uncertainty isr. The relativistic
mentum transfer per second and hence the force between thiiting value forvis ¢, and so the limiting value foZ from
electron and the nucleus is Eq. (7) is 137, as before.

F=plt=hclr2. (4) Part of the be_auty of physics is that we ofte_n can obtain
the same result in what appear to be entirely different ways.
. . . The maximum value oZ follows directly, if roughly, from

represents the maximum that can be mediated by virtual phqp,, Heisenberg relations and rigorously from the Dirac equa-

tons, corresponding to the Coulomb force tion, giving new insight into the meaning of the fine structure
F=(1/4meq)Z€%/r2. (5  constant.

If we equate Eqs(4) and(5), we obtain

)

Alternatively, F=|dE/dr| gives the same resltThis force

3Electronic mail: don@tangentprojects.co.za
Z=A4meghcle?, (6) YElectronic mail: krumm@nu.ac.za

. . !R. P. FeynmanQED, The Strange Theory of Light and Matt@rinceton
the reciprocal of the fine structure constant. Thus, the largest; p pr%cem:QN 3 1985Chap94 . 125. 9 !

number of protons allowed for a nucleus to admit a stablezg chandrasekhar, “On stars, their evolution and their stabiliyobel

electron orbit is 137. Lectures in Physigsedited by Gosta Ekspon@Norld Scientific, Sin-
gapore, 1998
IV. HEISENBERG AND ELECTRONS 3J. L. Martin, Basic Quantum Mechani¢®xford U.P., New York, 198]1 p.
- . . A 107.
Alternatlvely, consider an electron with relativistic mass “D. Bedford, “Indeterminacy and the electromagnetic and strong coupling

m, in a circular Orbit around a nucleus of charge. We constants,” Lett. Nuovo Cimento Soc. Ital. F&1, 303 (1981).
have, for the centripetal force,

Comment on “Apparatus to measure relativistic mass increase,”
by John W. Luetzelschwab [Am. J. Phys. 71 (9), 878—-884 (2003)]

Gordon J. Aubrecht 112
Department of Physics, The Ohio State University, Marion, Ohio 43302-5695
and Columbus, Ohio 43210-1106

(Received 27 August 2003; accepted 9 January 2004
[DOI: 10.1119/1.1652042

For a high energy physicist, it is disappointing to see thenentum and fundamental physics is reflected in the frame
term “relativistic mass increase” in a journal articiéeThe  independence of the various physical quantities.
mass(in the standard modgis a fundamental descriptor of a  In addition, the Etvos experiment and its successors iden-
particle. As we have describédhe problem arises because tify gravitational mass with inertial mass. The latter is the
of a lingering desire on the part of some physicists to premassm, the same mass that determines the mass-energy of a
serve the low-speedow-energy limit of the momentum, Particle.

p=mv, as the definition of momentum instead of using the SOMe Might argue that the correct expression for Newton's
correct relation at all speedsp=ymv, where y=[1 aw of universal gravitation contains the relativistic mass

2 . . - .
2112 _ . _ E/c“, notm as is usually written. However, the gravitational
B’ and,@ v(c. V\/_hen,@ 'S small,_p. my. o field in general relativity arises through a particle’s energy-
The four-dimensional invariant describing a particlées- momentum tensor, not a scalar mass, and the gravitational
sentially its mass:p“p#:mzc“. This relation is frame-

. el k force for B8 near 1 does not point entirely in the radial direc-
independent. The use of the term “relativistic mass increasefjon, as Okun has notéd.

implies that mass is a frame-dependent quantity, and accep- |n addition, | believe the author’s use of the antique unit,
tance of this proposition involves leaving behind the greathe curie, hides fundamental physics from the reader. | can
tradition of generations of physicists since the pioneeringinderstand the description 370000 disintegrations per sec-
work of Emmy Noether—exploiting the connection betweenond (370000 B for the sample activity much better than
universal symmetries and conservation |&wEhe connec- the 10uCi quoted in Ref. 1. Although one can still purchase
tion between invariants such as mass and spin angular mgamples in the United States designated in curies, | suggest

970 Am. J. Phys.72 (7), July 2004 http://aapt.org/ajp © 2004 American Association of Physics Teachers 970
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that the becquerel is much better for communicating among‘?Electronic mail: aubrecht@mps.ohio-state.edu . .
physicists(especially because it is unusual for those of us JA-WJ '-‘F’,itze';lch;vagvm”‘%%arggg to measure relativistic mass increase,
who are not nuclear or health physicists to be able to identify,~ " > "3 (9), 876-884(2003.
P . . Lo R. M. Barnett, H. Miary, H. R. Quinn, G. J. Aubrecht, R. N. Cahn, J.

the amount of activity in the curie, that is, the activity in one

ram of radiun). | suggest future use of statements such as Dorfan, M. Dresden, G. Goldhaber, J. D. Jackson, and K. Offe:
9 ’ . ) " LT Charm of Strange QuarkiSpringer-Verlag, New York, 2002Sec. D.3.3,

a 370000 Bqg(equivalent to 10uCi) source” to minimize pp. 244245
reader confusion.

. . . . SA. E. Noether, “Invariante Variationsprobleme,” Nachr. Ges. Wiss.
Reference 1 describes a nice experiment to determine that;getiingen, Math.-Phys. KI. 235-251918. For more information on

the relati\_/iStiC re_lations_p= ymv an_d E.: ymc? correctly Noether’s contributions, seéhttp://www.physics.ucla.edt/cwp/Phase2/
characterize particles with large | wish it had been labeled  Noether, Amalie Emmy@861234567.himl
that way. L. B. Okun, “The concept of mass,” Phys. Toddp (6), 31-36(1989.

The longitudinal momentum of transverse traveling waves on a string

Allan Walstad®
Division of Natural Sciences, University of Pittsburgh at Johnstown, Johnstown, Pennsylvania 15904

(Received 20 October 2003; accepted 9 January 2004
[DOI: 10.1119/1.1652043

Several years ago in this journal, Rowland and P sk X291 In t
note of a confusion in the literature regarding the longitudi-  Gyx=— of - —dx+f [Ki(X2,t) —Ky(Xq,t)]dt,
nal momentum carried by transverse traveling waves on a to
string. Through a combined numerical and analytical ap- &)
proach, they reache@hat | take to bga convincing reso-  whereK,=dK/dx= i\(d7/dt)? is the kinetic energy den-
lution of the matter. Rowland and Pask accurately diagnosesity due to transverse motion of the string.
the source of error by several authors in an unfounded as- According to Elmore and Heald,[Eq. (3)] for the mo-
sumption that the instantaneous velocity of an infinitesimainentumG, has the following interpretation: the second in-
segment of string is always perpendicular to the segmenteqra| on the right clearly represents momentum delivered to
This is not the source of .err(.)r,.howgver, in the influential texty, string segment by impulses at the two boundaries, at
by Elmore and Healdwhich is invariably cited by papers on o X,. If these boundaries are very remote, so that a wave
the subject and contains a frequently quoted incorrect ©XJisturbance initiated on the string segment has not yet had
pression for momentum density. The purpose of this note i ime to reach them, this integral vanishes. We are thus left

to identify the mistake, which is found in Chapter 1, Section_ . L .
11 pagef)é 46-47 of the book. as well as to dpemonstrate thg{lth the first integral, whose form suggests that the quantity

by correcting this mistake we arrive at the result of Rowland an dn
and Pask. G(XD=—Ro—m — (4)
In the notation of Elmore and Heald, the wave equation is
may be interpreted as a localized momentum density irxthe
Py 07 direction associated with a transverse wave.”
F:C F' 1) Here is the problem: the initiation of wave motion on a
X previously quiescent segment of string requires either that a
where p(x.t) is the transverse displacement ard wave propagates onto that segment from elsewhere on the
= ' : : : . string, or that external forces—other than the forces associ-
=(70/ko) ™" is the propagation velocity, witho the tension e \yith wave propagation itself—are imposed from outside
and\, the linear mass density. Their treatment of longitudi-ihe system. The first alternative directly violates the authors’
nal momentum starts with an expression for the |0”9'tUd'”abssumption that both ends of the string remain undisturbed

component of force density due to string curvature: during the integration time. The second alternative admits
forces not described by the expression being integrated.
P dn _ I*E 2 Let us adopt the first alternative, allowing for the wave to
T2 ax N2 2) propagate onto the string segmenixat Then we have

t t 2
with &(x,t) the longitudinal displacement of the string result- f Ky(x,,t)dt= 17\0] ((?_77) dt
to

ing from the transverse waveThen, in their own words, to 2 at
“we integrate with respect to time frory, a time when no 1 tand
. . . ndn
wave is present on the string, to an arbitrary later tiraed =— OJ — —dt
with respect tax over a finite string segment lying between 2 to It It
X1 andx,. The result should be the momentudy acquired 1 X2 49 A7
by the string segment as the result of transverse wave mo- =— = Of — —dx, (5)
tion.” These integrations lead to the following: 2 ")y It oox
971 Am. J. Phys.72 (7), July 2004 http://aapt.org/ajp © 2004 American Association of Physics Teachers 971
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the last equality holding by virtue of df/at)dt “Electronic mail: awalstad@pitt.edu

o ; . . ID. R. Roland and C. Pask, “The Missing Wave Momentum Mystery,” Am.
= —(aylox)dx for the traveling wave, which permits us to J. Phys 67, 378—388(1999.

convert the tlme mtegral to an mtegral overat tlme_t 2W. C. Elmore and M. A. HealdPhysics of Wave&McGraw—Hill, New
(whereas the time integrals were carried oukatx,). This York, 1969; Dover, New York, 1985
integral, inserted into Eq3), just cancels half the first inte-  3we are speaking here of small longitudinal motions associated with a
gral on the right-hand side of the equation, leaving the result transverse wave. The wave equation itself is derived under the approxima-
1 X297 In tion of purely transverse motion and uniform tension. Due to curvature of
Gy=— _)\OJ — —dx, (6) the string, the tension forces at opposite ends of an infinitesimal segment
2 X1 at ox do not cancel. The longitudinal component of the resulting net force is
much smaller than the transverse component if we Hawkx|<1. The
longitudinal motions may then be treated as a perturbation on the domi-
1 dn dn nant transverse motions. Longitudinal motions are also produced by the
Ox=— 2 M0 ot o () variations in string tension associated withgitudinalwaves; indeed, the
physical impetus which establishes a transverse wave is likely to generate
as the momentum density. This is the result obtained by a longitudinal wave too, and longitudinal waves are essential to the con-
Rowland and Pask, under the usual conditions pertaining toservation of momentum when a transverse wave encounters a density dis-
transverse waves on a string. continuity. Interested readers should consult Rowland and Pask.

which leads to identification of

Impedance between adjacent nodes of infinite uniform D-dimensional
resistive lattices

Peter M. Osterberg® and Aziz S. Inan
Department of Electrical Engineering and Computer Science, University of Portland,
Portland, Oregon 97203

(Received 24 September 2003; accepted 19 Decembel 2003
[DOI: 10.1119/1.1648331

Infinite resistive network problems have served as excel- The goal of this paper is to extend the results of Refs. 1
lent vehicles for helping electrical engineering and physicsaand 2 to the general problem of finding the total effective
students recognize and appreciate the power of superpositiegsistanceR,; between two adjacent nodes of any infinite
and symmetry in the analysis of electrical networks. Thesgy.dimensional resistive lattice, wheR=1, 2, 3,... and the
problems have been studied extensively using superpositiogice is periodic and infinite in alD dimensions with a
and symmetry~'° A special case of this class of problems zero-potential boundary condition at infinity. Our general so-

involves the calculation of the effective resistance between .. : : : :
; . : . lution for R4 is of ical interest it general-
two adjacent nodes of an infinite uniform two—dlmensmnaIIjlj on for Rey is of pedagogical interest because it genera

(2D) resistive lattice(periodic in both dimensions with a izes the previous results of Refs. 1 and 2 to a simple and

zero-poental bourdary conon a ftsomprised of S5gart SaUalon bl covers sl adacentnode ninie
identical resistors each of vall In particular, the effective

resistance between two adjacent nodes of the 2D Liebmaﬁqe ppwer_of t_he supgrposition principle and symmetry in
resistive meskthe infinite 2D square resistive latticevas € 'ccrical circuit analysis. . . L
calculated by Aitchischand found to be (1/8. Bartis’ cal- For the purpose of illustration, consider the infinite 2D
culated the resistance between adjacent nodes for three otH&t2'€ reS|st|\(/je Iatucehsho;vn.m dF'g' 1';/26 nlimbg ' of resis-
infinite 2D resistive lattices, the triangular, Honeycomb, and0rs connected to each node is denotedvbyM =4 in Fig.

Kagomelattices, and found the effective resistances to bel)- As in Refs. 1 and 2, we use superposition and symmetry
(13)R, (2/3)R, and (1/2R, respectively. along with two test current sources each of value calcu-

late the effective resistande.s between two adjacent nodes
by injecting a test current into any single node on the
D-dimensional resistive lattice from the zero-potential
boundary at infinity and then extracting another identical test
currentl from an adjacent node connected to a current sink
kept at zero potential. By using Kirchhoff’s current law and
symmetry, we find that each of thé resistors connected to
the original node will receivd/M of the injected current.
Similarly, we find that each of th# resistors connected to
the adjacent node will receive /M of the extracted current

in the opposite direction. Therefore, by superposition, the
total resulting current flowing in the resist@rconnecting the
two adjacent nodes will bel2M, which leads to a voltage
drop across the resistét of V=(2I/M)R. Thus the effec-
Fig. 1. Infinite 2D square resistive lattice. tive resistance is

972 Am. J. Phys.72 (7), July 2004 http://aapt.org/ajp © 2004 American Association of Physics Teachers 972
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R.-=V/l =2R/M (1) 2F. J. Bartis, “Let's analyze the resistance lattice,” Am. J. P85.354—

eff : 355 (1967.

) ) ) 3A. H. Zemanian, “A classical puzzle: The driving-point resistances of
Equation(1) is a new and remarkably simple, elegant, and infinite grids,” IEEE Circuits Systems Magaziré(1), 7-9 (1984
powerful result that applies to any infinite-dimensional 4A. H. Zemanian/nfinite Electrical Network§Cambridge U.P., New York,
resistive lattice. aob Chap operational Calculus Based on Th

: ; . . van der Pol and H. Bremme®perational Calculus Based on The
As an aSId.& we nOte. that using Symm.Etry’ SUp.erpc.)SItlon’Two-Sided Laplace IntegraChelsea, New York, 19873rd ed., pp. 371—
and a Laplacian analysis, the corresponding effective imped-5,,
ances for an |nf|n|t‘5D'd|menS|9na| purely 'quCt'Ve Or Ca- 6G. \enezian, “On the resistance between two points on a grid,” Am. J.
pacitive lattice can be determined in a similar waylag Phys.62, 1000—10041994.
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