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The Legendre transform is a powerful tool in theoretical physics and plays an important role in
classical mechanics, statistical mechanics, and thermodynamics. In typical undergraduate and
graduate courses the motivation and elegance of the method are often missing, unlike the treatments
frequently enjoyed by Fourier transforms. We review and modify the presentation of Legendre
transforms in a way that explicates the formal mathematics, resulting in manifestly symmetric
equations, thereby clarifying the structure of the transform. We then discuss examples to motivate
the transform as a way of choosing independent variables that are more easily controlled. We
demonstrate how the Legendre transform arises naturally from statistical mechanics and show how
the use of dimensionless thermodynamic potentials leads to more natural and symmetric
relations. © 2009 American Association of Physics Teachers.
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I. INTRODUCTION

The Legendre transform is commonly used in upper divi-
sion and graduate physics courses, especially in classical
mechanics,1 statistical mechanics, and thermodynamics.2,3

Most physics majors are first exposed to the Legendre trans-
form in classical mechanics, where it provides the connec-
tion between the Lagrangian L�q̇� and the Hamiltonian
H�p�, and then in statistical mechanics, where it yields rela-
tions between the internal energy E and the various thermo-
dynamic potentials. Despite its common use, the Legendre
transform often appears in an ad hoc fashion, without being
presented as a general and powerful mathematical tool as is
done for the Fourier transform.

In this paper, we present a pedagogical introduction to the
Legendre transform, discuss it as a mathematical process,
and display some of its general properties. Because some
students prefer algebraic approaches and others prefer geo-
metric ones, we discuss the transform from both points of
view and relate them. We then motivate the transform in
terms related to physical conditions and constraints. We em-
phasize some of the symmetries and structures of the trans-
form and present a series of increasingly complex examples
beginning with classical mechanics and then in statistical
mechanics. We end with some remarks on more general ver-
sions of the Legendre transform as well as other areas in
which it is widely used.

II. THE LEGENDRE TRANSFORM AS AN
ALTERNATIVE WAY TO DISPLAY INFORMATION

Many students can manage the rules for generating a
Hamiltonian from a Lagrangian or switching between ther-
modynamic potentials, but express discomfort when asked
about the Legendre transform as a general mathematical tool.
One reason is that in introductory physics we often treat a
function as a relation between physical rather than math-
ematical quantities. When we think about physical functions,

we tend not to pay attention to the particular functional form
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the mathematical function uses to encode physical
information.4 For example, if we are describing a position as
a function of time, we might write it as x�t�. We do not
bother to change the symbol x if we decide to give t in
milliseconds instead of in seconds. If we write the tempera-
ture as a function of position as T�r��, we do not change the
symbol if we switch to a different coordinate system or mea-
suring scale. In contrast, the Legendre transform is explicitly
about how information is coded in the functional form.

Students are usually first introduced to the Legendre trans-
form as the transformation from the Lagrangian L to the
Hamiltonian H. This transformation involves the switch
from the velocity to the momentum variable in the nonrela-
tivistic kinetic energy T. In the context of nonrelativistic par-
ticle motion with velocity independent potentials, the trans-
form involves the kinetic energy, the most trivial function to
which the Legendre transform can be applied. The result
looks like a shift from v to mv as an independent variable, so
that it seems pointless. Because the position variable q plays
no role in the transform and typically appears only in the
potential energy V, the result is often regarded as a mysteri-
ous change of the sign of V: L=T−V versus H=T+V.

In the rest of this section, we motivate the Legendre trans-
form as a general mathematical transformation and describe
a method that displays its general properties and symmetries.

For simplicity, we begin with a single variable x. Gener-
ally, a function expresses a relation between two parameters:
an independent variable or control parameter x and a depen-
dent value F. This information is encoded in the functional
form of F�x�. For later convenience, we will also denote such
a relation or “encoding” as �F ,x�.

In some circumstances, it is useful to encode the informa-
tion contained in the function F�x� differently. Two common
examples are the Fourier transform and the Laplace trans-
form. These transforms express the function F as sums of
�complex or real� exponentials and display the information in
F in terms of the amount of each component contained in the

function rather than in terms of the value of the function. We
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say that �F̃ ,k� encodes the same information as �F ,x�. For

the Fourier transform, F̃�k���eikxF�x�dx is an explicit
“transformation” between the two encodings.

Given an F�x�, the Legendre transform provides a more
convenient way of encoding the information in the function
when two conditions are satisfied: �1� The function �or its
negative� is strictly convex �second derivative always posi-
tive� and smooth �existence of “enough” continuous deriva-
tives�. �2� It is easier to measure, control, or think about the
derivative of F with respect to x than it is to measure or think
about x itself.

Because of condition �1�, the derivative of F�x� with re-
spect to x can serve as a stand in for x; that is, there is a
one-to-one mapping between x and dF /dx. �We remark on
relaxing this condition in Sec. VII.� The Legendre transform
shows how to define a function that contains the same infor-
mation as F�x� but as a function of dF /dx.

III. THE MATHEMATICS OF THE LEGENDRE
TRANSFORM

We first consider a single, smooth convex function of a
single variable. There are many equivalent ways to charac-
terize convex functions. The most convenient one is that the
second derivative d2F�x� /dx2 is always positive. Another
characterization of this condition is that the slope function

s�x� �
dF�x�

dx
�1�

is a strictly monotonic function of x �because this character-
ization also permits us to treat functions whose negative is
convex�.

A graphical way to see how the value of x and the slope of
a convex function can stand in for each other can be seen by
considering the example in Fig. 1, where the curve drawn to
represent F is convex. As we move along the curve to the
right �as x increases�, the slope of the tangent to the curve
continually increases. In other words, if we were to graph the
slope as a function of x, it would be a smoothly increasing
curve, such as the example in Fig. 2. If the second derivative
d2F�x� /dx2 exists �everywhere within the range of x in which
F is defined; part of the condition for a smooth F�, there is a
unique value of the slope for each value of x, and vice versa.

F

x

Fig. 1. �Color online� The graph of a convex function F�x�. The tangent line
at one point is illustrated.
The corresponding mathematical language is that there is a
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one to one relation between s and x; that is, the function s�x�
is single-valued and can be inverted to give a single-valued
function x�s�.

In this way, we can then start with s as the independent
variable, use the inverse function to obtain an unique value
of x, and then insert that into F�x� to obtain F as a function
of s. The standard notation for such a function is F�x�s��. If
we insist on a new encoding of the information in F �in terms
of s instead of x�, this straightforward “function of a function
approach” would appear to be the most natural way.

Instead, the Legendre transform of F�x� is defined differ-
ently and in a seemingly unnatural way:

G�s� � sx�s� − F�x�s�� . �2�

Typically, this definition is presented with little motivation or
explanation, and leaves the students to ponder: Why? Why
the extra sx? Why the minus sign? Frequently, the instructor
or textbook invokes another magical relation to answer such
queries. Only with this peculiar definition can we have the
property that “the slope of G�s� is just x”:

x�s� =
dG

ds
. �3�

This result requires a careful calculation.

A. A graphic-geometric approach

Before providing ways to appreciate this definition of the
Legendre transform, as well as how never to forget “which
sign goes where,” we present a graphical route to the trans-
form. Consider the plot of F versus x in Fig. 3. Choose a
value of x, which is represented by the length of the horizon-
tal line labeled by x. Go up to the value on the function
curve, F�x�. This value corresponds to the length of the ver-
tical line labeled by F. Next, draw the tangent to the curve at
that point. The slope here is labeled s, as emphasized by the
call out bubble. Extend this tangent until it hits the ordinate
�the “F axis”�. In this example, the intercept is negative and
is labeled as −G, with G positive. This value corresponds to
the length of the thick vertical line labeled by G. This length
is reproduced �thin line� just below the line labeled F. Be-
cause the slope of the tangent is s, the length of the dotted
vertical line is sx. From this picture, it is clear that sx=F
+G. In this interpretation, the peculiar definition of the Leg-
endre transform in Eq. �2� appears natural. The minus sign in

s

x

Fig. 2. The graph of s�x�, the slope of a convex function.
the definition is seen as a way of retaining the symmetry and

615Zia, Redish, and McKay



simplicity of the geometrical statement: In the triangle, the
slope �tangent� times the adjacent side equals the opposite
side, which is the sum of F and G.

B. Symmetric representation of the Legendre transform

This symmetric geometrical construction allows us to dis-
play a number of useful and elegant relations that shed light
on the workings of the Legendre transform. In particular, we
consider the symmetries associated with the inverse
Legendre transform, extreme values, and derivative relations.

Ordinarily, the inverse of a transformation is distinct from
the transform itself. For example, an inverse Laplace trans-
form is not given by the same formula. The Legendre trans-
form distinguishes itself in that it is its own inverse. In this
sense, it resembles �geometric� duality transformations.
Symbolically, we may denote this relation as:

�F,x� ⇔ �G,s� . �4�

Specifically, if we perform the Legendre transform a second
time, we recover the original function. �If the restriction of
convexity is relaxed, this statement must be revised, as re-
marked in Sec. VII.� In other words, suppose we start with
the function G�s� and calculate its Legendre transform. As
we will see, G�s� satisfies our conditions: convex and
smooth. So, we start with

y�s� =
dG

ds
, �5�

and invert the monotonic function y�s� to s�y�. Next, we
construct

H�y� = ys�y� − G�s�y�� , �6�

which can be rewritten as

G = sy − H . �7�

If we compare Eqs. �7� and �2�, we see that we can identify
�H ,y� with �F ,x�. Thus, the Legendre transform of G is the
original function F, leading to the statement: the Legendre
transform is its own inverse. This duality of the Legendre
transform, shown symbolically in Eq. �4�, is best displayed

x

F

G

sx

slope s

G

Fig. 3. �Color online� Graphic representation of the Legendre transform,
G�s�, of F�x� �Ref. 5�. See the text for an explanation of the various
quantities.
by the symmetric form
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G�s� + F�x� = sx . �8�

This equation should be read carefully. Despite its appear-
ance, there is only one independent variable: either s or x.
Referred to as a conjugate pair, these two variables are re-
lated to each other, through either x�s�=dG�s� /ds or s�x�
=dF�x� /dx. A careful writing of Eq. �8� would read either
G�s�+F�x�s��=sx�s� or G�s�x��+F�x�=s�x�x. To check the
consistency with Eqs. �1� and �3�, we can start with, say, the
first of these equations and differentiate with respect to s. By
applying the chain rule for dF /ds= �dF /dx��dx /ds�, we re-
cover dG /ds=x.

C. Properties of the extrema

The example in Fig. 3 shows a convex function F�x� with
a unique minimum. Let us denote this point by Fmin
=F�xmin�. The slope of the tangent vanishes here, that is,
s�xmin�=0. If we substitute this point into Eq. �2�, we find
that the minimum value of F is

Fmin = − G�0� . �9�

It is straightforward to show that a dual relation exists,
namely, the minimum value of G is Gmin=−F�0�. To appre-
ciate the geometric meaning of this relation, we need only to
inspect Fig. 3 and see that −G the y-intercept of the tangent
to the curve F�x� never reaches beyond F�0�.

By exploiting Eq. �8�, both this example and the case of
general extrema can be cast in an easy-to-remember symmet-
ric form. Suppose F takes on its extremal value at xext. Then
we have a horizontal tangent line and by definition, s�xext�
=0. Similarly, if G is at its extremum at sext, we have
x�sext�=0 due to Eq. �3�. In either case, the right side of Eq.
�8� vanishes and we have

G�0� + F�xext� = 0 and G�sext� + F�0� = 0. �10�

D. Symmetric representation of the higher derivatives

Because the Legendre transform is a dual relation, we can
expect manifestly symmetric relations beyond the ones we
have seen so far:

G�s� + F�x� = sx �11�

and

dG

ds
= x and

dF

dx
= s . �12�

From Eq. �12� we can obtain an infinite set of relations �if F
and G are infinitely differentiable� linking G and F, by tak-
ing derivatives of G+F=sx with respect to s or x. Because
each function depends on only one variable, the differentials
can be easily identified. Thus, differentiating the relations in
Eq. �12� with respect to s or x as appropriate, we find

d2G

ds2 =
dx

ds
and

d2F

dx2 =
ds

dx
. �13�
Because �dx /ds��ds /dx�=1, we have
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	d2G

ds2 
	d2F

dx2 
 = 1. �14�

We again emphasize that the variable s in the first factor and
the x in the second are not independent but linked through
Eq. �12�.

Equation �14� illustrates the importance of �strict� convex-
ity so that neither derivative ever vanishes. An interesting
result is that the local curvatures of the Legendre transforms
are inverses of each other in a manner reminiscent of the
uncertainty relation �x�k�1. For simplicity, suppose F is
dimensionless but x is not,6 so that s has the dimension of
1 /x. With this convention, it is easy to check the units of
Eqs. �11�, �12�, and �14�. If we differentiate Eq. �14� again,
we can write a symmetric relation for the third derivative:

d3G

ds3 �d2G

ds2 
−3/2
+

d3F

dx3 �d2F

dx2 
−3/2
= 0. �15�

Notice that each term is dimensionless, because the units of
the various derivatives cancel.

It is possible to derive an infinite set of such relations for
higher derivatives by differentiating further. Such an exercise
also shows that if F is smooth �with a well defined nth order
derivative�, then so is G. The relations for higher derivatives
do not have forms as simple as Eqs. �11�, �12�, �14�, and �15�
but become more and more complex.

IV. EXAMPLES OF THE LEGENDRE TRANSFORM
IN SINGLE-PARTICLE MECHANICS

It is useful to provide some physical examples to illustrate
these relations. The simplest is a quadratic function F�x�
=�x2 /2. For this function we easily find that s=�x and x
=s /�, leading to G�s�=s2 /2�. The curvatures in F and G ��
and 1 /�, respectively� are inverses of each other as required
by Eq. �14�. All derivative relations beyond this level are
trivial, that is, 0=0.

This example corresponds to a single nonrelativistic par-
ticle with mass m moving in an external potential V�q�. The
Legendre transform connects the Lagrangian L�q̇� to the
Hamiltonian H�p�. Only the kinetic term, which depends on
q̇ or p, is affected by the transform, because the potential
depends on a different variable: q. In this case, x→ q̇, F
→L, �→m, s→p, and G→H, so that L=mq̇2 /2⇔H
= p2 /2m. Because V�q� is just a “spectator” in the Legendre
transform, it must appear with opposite signs in F and G
�that is, L and H� to satisfy F+G=sx �that is, L+H= pq̇,
with no q anywhere�. Thus, we see the origin of the myste-
rious sign change in V when we go from the Hamiltonian to
the Lagrangian.

Relativistic kinetic energy is a more interesting case. Here,
let us go the other way, start with �H , p� and generate the
velocity as its slope. The relativistic kinetic energy as a func-
tion of momentum is H�p�=�p2+m2 �with c=1�, clearly a
convex function. Its slope at the point p is

v �
dH
dp

=
p

�p2 + m2
, �16�
giving the familiar result
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p = mv/�1 − v2. �17�

Creating the Legendre transform using this pair of variables
leads to the Lagrangian7

L�v� = pv − H�p�v�� = − m�1 − v2. �18�

This example can also be written in terms of the function
F�x�=cosh �x. The demonstration is left to the reader �see
Ref. 8�.

Let us turn to a less familiar example that is so trivial it
does not appear in typical textbooks. Yet it sets the stage for
examining the role of the Legendre transform in equilibrium
statistical mechanics. Consider a particle in a one-
dimensional convex potential well, U�x�, which has a unique
minimum at xmin. An example would be a particle attached to
a wall by a nonideal spring, with x being the distance from
the point where the coils of the spring are fully compressed.
The potential is effectively infinite at x=0, decreases to a
minimum at its natural extension, and then increases for
larger x. �We restrict our attention to positive values of x but
less than the breaking point of the spring.� Another example
of U is the potential that binds two atoms into a molecule
�though such U’s are rarely convex for all separations�.

The particle is stationary only if it is at xmin for all time. If
it is subjected to an additional external applied force f , then
it will reach a new stationary point x0, which is the solution
to the equation

�dU

dx
�

x0

= f . �19�

To emphasize the dependence of this point on f , we write
x0�f�. We can ask the inverse question: If we want the par-
ticle to settle at x1�xmin, what force do we need to apply?
The answer is f�x1�, a force that depends on which x1 we
choose. A little thought leads us to the explicit functional
form f�x1�= �dU /dx�x1

. There is nothing special about the
subscripts here, and we may write

f�x� =
dU

dx
, �20�

and x�f� instead of x0�f�.
Although Eq. �20� gives f�x� explicitly, we may ask if

there is a counterpart to U which provides the inverse, x�f�,
explicitly. If so, we can substitute f into the expression and
arrive at the new equilibrium position. The answer is the
Legendre transform of U, namely, V�f�= fx−U�x�f��. We
leave it to the reader to show that

x�f� =
dV

df
�21�

is the companion to Eq. �20�.
All the details can be worked out for the simple example

of the mass on a spring with U�x�=kx2 /2. This example is
the analog of the nonrelativistic kinetic energy Legendre
transform. The reader can easily demonstrate that the
Legendre transform equation U+V= fx becomes �f −kx�2=0,
yielding the relation between f and the new equilibrium
point x.

Note that the information about the system �for example,
the wall-spring-particle complex� is fully contained in either

U or V. The only difference is in the coding: �U ,x� or �V , f�.
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Although U is the usual potential energy associated with the
particle at x, V is a kind of potential associated with the
control f . In ordinary classical mechanics, such an approach
seems unnecessarily cumbersome for describing the simple
problem we posed. For this reason it is rightfully ignored in
a course on classical mechanics. We include the example
here only as a stepping stone to the Legendre transform in
statistical mechanics and thermodynamics. There, multiple
potentials are essential.

V. THE LEGENDRE TRANSFORM IN STATISTICAL
THERMODYNAMICS

The Legendre transform appears frequently in statistical
thermodynamics when different variables are “traded” for
their conjugates.2 Often, one of the variables is easy to think
about, and the other is easy to control in physical situations.

The difficulty with making sense of the Legendre trans-
form in thermodynamics arises from two causes: �1� For his-
torical reasons, Legendre transform variables are not always
chosen as conjugate pairs. �2� Many variables in thermody-
namics are not independent and are constrained by equations
of state, for example, PV=NkBT.

As an example of the first point, the conjugate to the total
energy E of a system is the inverse temperature �=1 /kBT.
Yet, our daily experience with the temperature T is so perva-
sive that T is used in most of the relations. Thus, the familiar
equation

F = E − TS , �22�

which relates the Helmholtz free energy F to the entropy S,
obscures the symmetry between � and E, as well as the
dimensionless nature of the Legendre transform. If we define
the dimensionless quantities

S � S/kB and F � �F , �23�

the duality between them can be beautifully expressed as

F��� + S�E� = �E . �24�

To elaborate the second point, we typically encounter a
bewildering array of thermodynamic functions �for example,
entropy, Gibbs and Helmholtz free energies, and enthalpy�, a
slew of variables �energy, temperature, volume, and pres-
sure�, as well as a jumble of thermodynamic relations �with
multiple partial derivatives�. Because of the multiple con-
strained variables, none of these examples is as simple as
those we have considered, compounding the difficulty of
both teaching and learning this material.

Before discussing the generation of the standard thermo-
dynamic potentials, we briefly summarize the basics of sta-
tistical mechanics. We will show how the Legendre trans-
form enters thermodynamics through the Laplace transform
of partition functions in statistical mechanics.

Equilibrium statistical mechanics is based on the
hypothesis2 that for an isolated system, every allowed mi-
crostate is equally probable. The high probability of finding a
particular equilibrium macrostate is due to a predominance
of the number of microstates corresponding to that mac-
rostate. The classic example is a gas of N identical, free,
nonrelativistic structureless particles, confined in a
D-dimensional box of volume LD. For this system, a mi-
crostate is specified by the 2DN variables corresponding to

the positions and momenta of each particle, �r�i , p� i�, with i

618 Am. J. Phys., Vol. 77, No. 7, July 2009
=1, . . . ,N. Because the total energy E is a constant for an
isolated system, the fundamental hypothesis can be repre-
sented as

P��r�i,p� i�� � ��E − H��r�i,p� i��� , �25�

where P��r�i , p� i�� is the probability of finding the configura-
tion of positions and momenta �r�i , p� i�. In this case, the
Hamiltonian H is explicitly given by

H = �
i

h�r�i,p� i� = �
i
� p� i

2

2m
+ U�r�i�
 , �26�

where m is the mass of each particle and U is the confining
potential, which is zero for each component of r�� �0,L� and
infinite otherwise.

The normalization factor for P is

��E� = �
r,p

��E − H��r�i,p� i��� , �27�

where the integral is over all �r�i , p� i� from −� to �. �The
infinite values of U restrict the actual position integrations to
the volume of the box.� We have also suppressed the other
variables that � depends on for now: L and m. Note that � is
just the volume of phase space available to the system and is
the microcanonical partition function.

The standard approach evaluates the integral in Eq. �27� as
follows. The position integrals can be done explicitly be-
cause the only dependence of the Hamiltonian on position is
the confinement of the position integrals to the allowed vol-
ume. These integrals yield a factor of LND. The momentum
integrals are done by computing the surface area of a sphere
in DN dimensions.

The entropy is introduced by the definition S�kB ln �.
We exploit the dimensionless entropy S and write

S�E� � ln ��E� . �28�

To proceed, we have two choices: the route that emphasizes
the mathematics or the physics.

A. The route of mathematics

Our task is straightforward: evaluate integrals with a con-
straint such as Eq. �27�. Often, such integrals are not easy to
perform. However, exploiting the Laplace transform typi-
cally renders the integrand factorizable. For example, the DN
integrations in Eq. �27� become products of a single integral.
Specifically, we consider the Laplace transform of ��E�,

Z��� � � ��E�e−�EdE . �29�

If we substitute Eq. �27� for ��E�, the delta function permits
us to do the E integral giving

Z��� = �
r,p

e−�H. �30�

Because H is a sum over the individual components, the

integrand factorizes, and we have
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�
r,p

e−�H = �
r,p

�
i

e−�h�r�i,p� i� = �� dr�dp�e−�h�r�,p��
N

. �31�

The expression in �…� is much easier to handle and is
LD�2	m /��D/2. An attentive reader will have noticed from
Eq. �30� that Z is the canonical partition function and can
appreciate the statement: The two partition functions are re-
lated to each other by a Laplace transform.

To return to our goal, ��E�, we need to perform an inverse
Laplace transform, that is,

��E� = �
C

Z���e�Ed� , �32�

where C is a contour in the complex � plane �running parallel
to and to the right of the imaginary axis�. We define

F��� � − ln Z��� , �33�

and write the integral as

eS�E� = �
C

e−F���+�Ed� . �34�

To continue, it is necessary to inject some physics. In this
case, we expect to be considering many particles, that is,
large N. From Eq. �31� we have F�N, leading us to expect
that the range of E of interest is also O�N�. The standard tool
for evaluating integrals with large exponentials as integrands
is the saddle point �or steepest decent� method. Thus, we
seek the saddle point in �, which is defined by setting the
first derivative of �E−F��� to zero:

� d��E − F�
d�

�
�0

= 0. �35�

In other words, we have

� dF
d�
�

�0

= E . �36�

We emphasize that �0 should be regarded as a function of E
here.

In this approach, the integral in Eq. �29� is well approxi-
mated by evaluating the integrand at the saddle point, so that

��E� � exp��0E − F��0�� , �37�

or using Eq. �28�

S�E� + F��0� = �0E , �38�

with the understanding that �0 and E are related through Eq.
�36�. There is nothing significant about the subscript on �,
and Eq. �38� is identical to Eq. �24�. In other words, S and F
are Legendre transforms of each other. Thus, we see that �for
situations involving a large parameter, N in this case� the
Laplace and Legendre transforms, Eqs. �29� and �38�, respec-
tively, are related to each other as a result of the thermody-
namic limit.

B. The route of physics: Interpretation of the equilibrium
condition

Under what conditions does the internal energy move from
one object to another and under what conditions can it be

converted to work? Part of the answer lies in understanding
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which way the energy will move if we bring two systems
into thermal contact. Why does it not go always from the
system with more energy to the one with less? Considering
this question leads us to the Legendre transform.

When two systems �not necessarily of the same size or
energy� are brought together and the combined system iso-
lated, Etot�E1+E2 will remain a constant and can be re-
garded as the control parameter. The individual Ej’s are not
fixed, and we ask: Starting at some initial values, how do
they end up at the final equilibrium partition �E

1
* ,E

2
*�? The

answer lies with Stot�Etot �E1 ,E2�, the entropy of the com-
bined system subject to the specific partition of Etot into
�E1 ,E2�. The idea is that eStot counts the number of allowed
microstates associated with a particular partition and carries
information of how probable that partition is. Calculating
this quantity is usually not easy. However, if we focus on
systems with extensive entropies, then we may write to a
good approximation: Stot=S1+S2 with S1=S1�E1� and S2

=S2�E2�. These statements are not trivial: We are injecting
the physics that for the specified conditions, the entropies of
each system do not depend on the energy of the other.

Given these assumptions, we ask: For what partition will
Stot be a maximum, or equivalently, which partition is the
most probable? If we write E2=Etot−E1 and recall that Etot is
fixed, this task is easy. The maximum occurs at E

1
*, which is

defined by

� dStot

dE1
�

E
1
*

= 0. �39�

Because dE1=−dE2, we have

� dS1

dE1
�

E
1
*

= � dS2

dE2
�

E
2
*
, �40�

where E
2
*=Etot−E

1
*. This result is significant, because each

side does not depend on the parameters of the other system.
Thus, if we associate a quantity with dS /dE, which we de-
fine by

��E� �
dS
dE

, �41�

then Eq. �40� becomes

�1�E1
*� = �2�E2

*� . �42�

In other words, the most probable partition occurs when the
� of one system equals the � of the other. This condition
does not depend on the details of the two systems, such as
composition, size, or state �gas, liquid, or solid�. When the
two systems are brought into contact, energy will be trans-
ferred between them until they settle at values given by this
condition: the equality of ��dS /dE, associated with each of
them separately. It is natural, therefore, to use this quantity
for describing our daily experience; namely, two systems,
one hot and one cold, will equilibrate at a common tempera-
ture T when brought in contact with each other. Historically,
many arbitrary scales were used for T. Their relation to the
more natural quantity � was clarified later.

Besides providing a natural scale to describe “hot” and
“cold,” can the variable � be exploited further? For a given
system we can write S�E����, but is that useful? The answer

is connected to the canonical ensemble, the �Helmholtz� free
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energy, and the Legendre transform of S. There is no need to
reproduce here the standard derivation of this ensemble and
the Boltzmann factor e−�H. In the previous section, we dis-
cussed the transformation between the partition functions
Z��� and ��E� and the relation to the Legendre transform
between S�E� and F���.

C. How does the Legendre transform enter into
thermodynamics?

For convenience, we summarize the key relations using
dimensionless potentials:

��E� = eS�E� Z��� = e−F���, �43�

dS
dE

= �,
dF
d�

= E , �44�

where Z���= �dEe−�E��E� and F���+S�E�=�E in the ther-
modynamic limit. We can now see where the Legendre trans-
form enters and why it is useful. The entropy S is a function
of E, but the internal energy is typically not easy to control.
To put more �less� energy into a system, we may heat �cool�
it. In other words, we often manipulate E by coupling the
system to an appropriate thermal bath, so the temperature or
� becomes the control variable. In that case, we can perform
a Legendre transform of S�E� and work with F��� instead.
Because �S ,E� and �F ,�� contain the same information
about the system, it makes sense to deal with the more con-
venient thermodynamic potential when we change the con-
trol on a system from one variable to another.

Because the independent variable in a thermodynamic po-
tential is to be regarded as a control �or a constraint� param-
eter, the slope associated with this function �for example,
dS /dE and dF /d�� carries physically significant informa-
tion, namely, the response of the system to this control. The
Legendre transform exchanges the role of the variables asso-
ciated with control and response. In the example we just
discussed, temperature �or �� is taken as the �very familiar�
control variable, and the internal energy is regarded as the
response. Thus, the free energy F��� is the more appropriate
potential, with E=dF /d� being the response. In the trans-
formed version, which is mathematically and conceptually
easier to grasp, E is a constraint �conserved variable for an
isolated system� and S�E� is the more appropriate potential.
After we understand the significance of its slope, dS /dE, we
can identify the response � as a measure for temperature.
There are many other examples of response/control pairs to
which the same kind of transformation may be applied, such
as particle number and chemical potential, polarizability and
electric field, and magnetization and magnetic field.

VI. LEGENDRE TRANSFORM WITH MANY
VARIABLES

The thermodynamic potentials depend on many variables
other than the total energy E. Each variable that can be in-
dependently controlled elicits a distinct response. As we con-
struct Legendre transforms for each of these control/response
variable pairs, we generate a new thermodynamic potential.
The result is a plethora of thermodynamic functions. We em-
phasize that all these thermodynamic potentials carry the

same information but encoded in different ways. We begin
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this section by discussing briefly the mathematical structure
of the multivariable Legendre transform and then apply it to
thermodynamics and statistical mechanics.

Consider the multivariate function F�x��, where x� stands
for M independent variables: x1 , . . . ,xM. For convenience,
suppose F is smooth and convex over all of this
M-dimensional space. At every point x� there will be M
slopes:

sm =
�F

�xm
� �mF , �45�

and M�M +1� /2 second derivatives, �m��F, which can be re-
garded as a symmetric matrix. The convexity restriction re-
quires that all of the eigenvalues of this matrix are positive
�or negative�.9 In the context of thermodynamics, convexity
is the condition for stability in equilibrium systems.10 A stan-
dard corollary is that the relation between �xm� and �sm� is
one to one, so that we can replace any one of the xm’s by the
corresponding sm through a Legendre transform.

Because we can transform any number of the x’s, we may
consider �up to� 2M functions. For example, if we restrict
ourselves to �E ,V�—the standard variables for the microca-
nonical ensemble of the ideal gas—there are four thermody-
namic functions: entropy, enthalpy, Gibbs, and the Helmholtz
free energy. One way to picture the relation between so many
functions is to put them at the corners of an M-dimensional
hypercube. Each axis in this space is associated with a par-
ticular variable pair �xm ,sm�. Going from one corner to an
adjacent corner along a particular edge corresponds to carry-
ing out the Legendre transform for that pair. For the M =2
example of �x1 ,x2�= �E ,V�, the hypercube reduces to a
square, which is related, but not identical, to the square that
appears in some texts.2,11 Thanks to the commutativity of
partial derivatives, going from any corner to any other corner
is a path independent process, so that the function associated
with each vertex is unique. For example, if we exchange
�x� ,xm� for �s� ,sm�, the Legendre transform relations would
be the simple generalization of Eq. �11�:12

F�x1, . . . x�, . . . xm, . . . xM� + G�x1, . . . s�, . . . sm, . . . xM�

= s�x� + smxm, �46�

with ��G=x�, �mG=xm, ��F=s�, and �mF=sm. We should
have given this G some special notation to denote that its
variables are all �x� except for the two that are �s�. A possi-
bility is G�,m, but for simplicity we do not pursue this issue
further. One special Legendre transform is noteworthy—the
one in which all variables are �s�. Located at the corner of
the hypercube diametrically opposite to F, this function will
be denoted by H. In this case, the Legendre transform rela-
tion simplifies to

H�s�� + F�x�� = s� · x� . �47�

Generalizations for higher derivatives are straightforward.
For example, Eq. �14� becomes

�
m

����mH���m�nF� = ��n, �48�

where � is the unit matrix. The convexity of F guarantees

that the inverse of �m�nF exists.
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Let us now apply these considerations to the thermody-
namics of a gas. We begin with the microcanonical partition
function ��E ,V� and consider the mapping

F�x1,x2� → S�E,V� � ln � , �49�

where x1→E ,x2→V ,s1→�, and s2→
. The last of these is
related to the pressure P. The Legendre transform with re-
spect to x1 leads to the Helmholtz free energy. Our symmet-
ric and dimensionless version of F=E−TS is the same as Eq.
�24�: F�� ,V�+S�E ,V�=�E, with V playing the role of a
“spectator.” To be precise, we now write Eq. �41� with the
partial derivative:

� � � �S
�E
�

V
. �50�

For the second Legendre transform with respect to x2=V, we
define13


 � � �S
�V
�

E
�51�

and arrive at

G��,
� + S�E,V� = �E + 
V , �52�

where G��G�T , P� is the dimensionless Gibbs free energy.
The relation between 
 and the traditional definition of pres-
sure, P�−��E /�V�S, is 
=�P. To derive this relation would
take us further into the first law of thermodynamics and the
notion of heat transfer. The interested reader should consult a
standard text such as Ref. 13.

We return to Eq. �52�, move S, and divide both sides by �
to arrive at its more common form: G=E−TS+ PV. The
seemingly mysterious signs of the last two terms on the right
are, from our perspective, due to the placing of S and the use
of T instead of �. In contrast, every term comes with a posi-
tive sign in Eq. �52�, with all the potentials on the left and all
the conjugate variables on the right. Note that there are just
two variables in this example, so that G plays the role of H in
Eq. �47�, which is an explicit version of Eq. �52�.

We next consider the enthalpy, which is laden with extra
complications. For various reasons, S �instead of E� is cho-
sen to be the independent variable for arriving at the en-
thalpy. As a result, instead of �, the natural conjugate vari-
able is T �=�E /�S�. Regarding S as a control variable with
which to access E is conceptually difficult. However, it is
common to think of transferring heat so that TdS appears as
the means of control. If we take the Legendre transform of
E�S� in the standard fashion, we would arrive at TS−E,
which is the Helmholtz free energy except for a sign. The
disadvantage is clear, but there are advantages to this ap-
proach. In particular, by starting with E�S ,V�, we naturally
arrive at the ordinary pressure, −P, as the conjugate to V
�instead of 
�. Note the extra minus sign here. The Legendre
transform with respect to V of E�S ,V� gives �−P�V−E, the
�negative of� enthalpy H=E+ PV. If we allow logic to over-
come tradition, we would have defined the last potential as
H�E ,
� �not to be confused with the Hamiltonian H�
through the Legendre transform

H�E,
� + S�E,V� = 
V , �53�

in which the variable E plays the role of a spectator. But, the

beauty of pure reason does not always prevail, and we must
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often abide by the results of our historical paths.

VII. CONCLUDING REMARKS

There are many interesting aspects of the Legendre trans-
form we have not discussed. Covering all aspects would be
more appropriate for a textbook. We conclude by touching
on just two important generalizations—the Legendre trans-
form of nonconvex functions and functions defined on
spaces with nontrivial topology, such as the angle on a
circle—and providing references for further reading.

If a function is nonconvex, the Legendre transform be-
comes multivalued. If we delete all but the principal branch,
the Legendre transform develops discontinuous first deriva-
tives. If we perform another transformation, the result would
be the convex hull of the original. This topic is intimately
related to the Maxwell construction and the coexistence of
phases �for example, liquid and vapor�. Although most texts
on thermodynamics and statistical mechanics discuss the
Maxwell construction, few demonstrate its relation to the
Legendre transform of nonconvex functions. A good ex-
ample of a convexified �free energy� function is given in Ref.
14.

A second generalization concerns variables whose do-
mains have a nontrivial topology, the simplest being func-
tions defined on a circle or the surface of a sphere. The
angles are the most natural variables for a sphere, but we
must be mindful of the periodic nature of �� �0,2	� and the
co-ordinate singularities at the poles �=0,	. An example is
the shape of crystals in equilibrium with its liquid �for ex-
ample, 4He crystals in coexistence with the superfluid15� or
vapor �for example, gold crystals16�. Typical crystal shapes
are not spherical and can be described by a nontrivial func-
tion R�� ,��, which specifies the distance from the center of
mass to a point on the crystal surface labeled by �� ,��. The
tangent plane at that point can be associated with the direc-

tion of its normal and labeled by ��̃ , �̃�. The relation between
these and the derivatives ��R and ��R exists but is not
simple. From these derivatives a �generalized� Legendre

transform of R can be constructed: 
��̃ , �̃�. The function 
 is
also a significant physical quantity: it is the free energy per
unit area �the surface tension� associated with a planar inter-

face, with normal ��̃ , �̃�, between the crystalline and the iso-
tropic phases of the material. A bonus is that, unlike typical
thermodynamic potentials such as the entropy and free ener-
gies, the potential R�� ,�� is not just an abstract concept; it is
the shape of a physical object in three dimensions. Further
details of this intriguing connection are in Ref. 17.

Finally, we point readers to horizons far beyond those dis-
cussed here. Because our purpose is to reach students and
instructors in upper undergraduate and core graduate courses,
we have limited our considerations to cases with two �or
finite M� variables. It is possible to study the Legendre trans-
form with an infinite number of variables. Probably the best
known example in physics comes from both quantum field
theory18 and statistical field theory.19 Associated with each
quantum field ��r� , t� is a “source field” J�r� , t�, in much the
same way that a fluctuating local magnetization, m�r��, can be
“created” by an inhomogeneous magnetic field B�r��. In the
latter system, the fluctuations of m are thermal, rather than
quantum, in nature. The source field can be regarded as a

control variable for each r� , t �or just r��. Thus, there are an
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infinite number of variables, as well as responses, involved.
Corresponding to a given J�r� , t� or B�r��, we can calculate, in
principle, the “vacuum energy” U�J�r� , t�� or the free energy
F�B�r���. These quantities carry information on the quantities
of interest: connected Schwinger functions �expectation val-
ues of products of �’s� or correlations functions �averages of
products of m’s�. More useful than U is its Legendre trans-
form, �, which is known as the effective action. � displays
the essential information more conveniently in terms of one
particle irreducible Schwinger functions or vertex functions.
For the effective action of a quantum field, there is a particu-
larly appealing systematic expansion in powers of �. The
zeroth order term is just the classical action. Similarly, for
the Legendre transform of F, there is a systematic expansion
in powers of T or �−1. Not surprisingly, the zeroth order term
is just the energy associated with m�r��, which is the Hamil-
tonian H�m�r��� that enters the Boltzmann factor exp�−�H�.
We hope that these comments will help some students who
are struggling with field theory or further motivate those who
are waiting to delve into the subject.
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