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Thermal Expansion and Elastic Constants'

Hassel Ledbetter?

We give a simple, useful relationship between thermal expansion, 4V/¥V, and
elastic constants. The relationship permits estimation of thermal expansion from
only elastic constants (second order and third order) and atomic volume.
Elastic—constant temperature dependence is not required. We test the rela-
tionship for a variety of crystalline solids. Considering the 0-293 K region,
measurement—calculation disagreement ranges from less than 1 to 15%. The
model permits extrapolation of high-temperature (near-linear) thermal expan-
sion to zero temperature.

KEY WORDS: crystals; Debye temperature; Einstein temperature; elastic
constants; Griineisen parameter; low temperatures; thermal expansion; thermal
expansivity; zero-point energy.

1. INTRODUCTION

This study focuses on the volume change that occurs when a solid’s
temperature increases from zero to some temperature near the Einstein or
Debye temperature:

AV _V(T)=V(0)

Vv V(0) (1)

Usually, one calculates 4V/V by integration:

AV/V=LT[¥(T) dT )
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Here, § denotes the usual volume thermal expansivity:
B(T)=(1/V)(@V/0T), (3)

The present study provides an alternative approach to estimating
AV/V. It requires knowing C; and Cy, the second-order and third-order
elastic constants, but not their temperature dependences. It extends ideas
given by Sheard [1].

2. THEORY

In discussing simple statistical-mechanical models of solids, Slater [2]
gave an expression for the volume thermal expansivity:

B=(k/BVo) Y. v;(hv;/kT)* exp(hv;/kT)/[exp(hv,/kT)— 11> (4)

Here &k denotes Boltzmann’s constant, # Planck’s constant, B the bulk
modulus, V7, the total volume of solid at zero temperature, v the vibrational
frequency, and j the jth oscillator (j=1 - 3N for a crystal containing ¥
atoms), and y;, the mode Griineisen parameter, is given by

y,= —dlnv,/dIn ¥V (5)

Following Einstein, we take all v,=v; following Griineisen, we take all
7;=7, where v and y represent average values. We introduce the Einstein
characteristic temperature @y =hv/k and the atomic volume V, =V /N.
Thus simplified, Eq. (4) becomes

B=(3ky/BV,)(Ok/T)* exp(O/T)/[exp(Ox/T) — 11 (6)

Here, the sum over j in Eq. (4) is 3N.
For simplicity, we ignore the small temperature dependences of y, B,
0, and V,. Integrating Eq. (6), we get

AV/V(T) = (3kyOg/BV,)/[exp(@g/T) — 1] (7)

Equations (6) and (7) contain four parameters: B, y, @, and V,.
Below, we describe how B depends only on the C,, 7 only on the C; and
C, and @ only on the C; and V,. Thus, we can estimate both $(7) and
AV/V(T) from the elastic constants and atomic volume.

For simplicity, we also consider only cubic-symmetry materials, which
possess three independent second-order elastic constants: Cy;, C,,, and
Cu4. [To extend the approach to noncubic symmetry would require more
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general expressions for Egs. (9), (14), and (15).] From the general expres-
sion for the bulk modulus [37,

B:é_ _ Ciijj (8)

we obtain
B=§(C11+2C12) 9

We can calculate the Einstein temperature, O = (3/4) @, where &
denotes Debye temperature, by first calculating the mean sound velocity v,

[4]:
O = (3/4)(h/k)(3/4nV )" vy, (10)

Here V, denotes atomic volume and v,, the mean sound velocity obtained
by numerical integration over all directions:

3u;3=(1/4n)f Y v lde (11)
a=1,3

Here v, denotes the quasilongitudinal sound velocity, v, and v; the quasi-
transverse sound velocities, and d€2 the incréement of solid angle. Phase
sound velocities v, are roots of the Christoffel equations:

det(C,;,—,(,njnk—pvzéi,)=0 (12)

Here, p denotes mass density, »;, components of unit wave vector, and J,
the Kronecker delta. As discussed by Blackman [4], various methods exist
for solving Eq. (11), but direct numerical integration provides the simplest
approach. We used seventy vectors distributed over 1/48 of space.

We used the high-temperature limit of the thermodynamic Griineisen
parameter [5]:

YH =357 Z Vi (13)

To calculate the mode Griineisen parameters, y,, we used the following
relationship [6, 77:

1
Y= (6_w> {2W+ Ci+2C,H+(Cyyy +2C112)(N%U%+ N§U§+N§U§)

+ (Cias+2C166) [ (N, Us + N3 U, )?
+(N;U, + N, U;)*+ (N, U, + N, U,)?]
+2(Cy23+2C ) (No N3 U, Us + N3N Us U + N N, UL US) } (14)

840/12/4-3
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Here
w=C,(N?UI+NiUI+N2IU3)
+ Cu[(NyUs + N3 U,)? + (N3 U + N, Us)* + (N, U, + N, U2
+2C5,(N,N;U,Us 4+ N3N, U, U, + N N, U, U>) (15)

The vectors N and U refer to propagation and polarization vectors of the
jth normal mode. The elastic constants are expressed in Voigt’s contracted
notation.

Table I shows the input information and the calculated 4V/V results
for nine materials: five metalilic elements, a covalent element, a covalent
compound, and two ionic compounds (valence I and valence 2). The
calculation—measurement comparison shows differences ranging from 1 to
15%. The smallest disagreements seem to occur in close-packed high-
Einstein-temperature materials.

For copper, Fig. 1 shows the curve predicted by Eq. (7) together with
measured values [8]. We could achieve an exact (to the eye) fit by
reducing @ from 248 to 243 K. The dashed line in Fig. 1 represents a
linear extrapolation from high temperatures, where from Eq. (7) the slope
equals 3ky/BV,. The intercept at T=0 gives the zero-point vibration-
induced volume increase:

(AV/V),p, = 3kyO/2BV, (16)

We note that (4V/V),, equals approximately the volume change caused by
warming from 0 to 293 K. Indeed, for @y =293K, a typical FEinstein
temperature, Egs. (7) and (16) show that

(AV]V)o203/(4V]V),, = 1.16 (17)

Table I. The 0-293 K Thermal Dilatation Predicted for Various Materials

AVIV (%) Ratio
B Va O O theory:
Material y (10'N-m=?) (A*) (K) (K) Theory Observed observed
Al 222 0.759 16.60 408 306 1.21 1.25 0.97
Cu 2.03 1.353 11.81 330 248 098 0.98 1.00
Ag 2.50 1.012 1706 216 162 1.31 1.24 1.06
An 2.57 1.735 1696 155 116 0.86 0.98 0.88
Fe 1.81 1.669 11.70 464 348 0.59 0.59 0.99
Ge 0.76 0.754 2264 371 278 0.32 0.28 1.13
GaAs 0.65 0.755 22,50 345 259 0.29 0.27 1.06
NaCl 1.46 0.252 2241 303 227 2.26 2.32 0.97

MgO 1.60 1.533 9.35 946, 710 0.35 0.41 0.86
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Fig. 1. For copper, a theoretical curve correspond-
ing to Egq. (7). Open circles represent observed
values recommended in Ref 8. The dashed line
represents linear extrapolation from high tem-
peratures. Its intercept at T'=0 gives the zero-point
energy contribution to volume. Lowering the @
from 248 to 243 K gives exact agreement between
theory and measurement.

Finally, we want to emphasize the possibility of using Eg.(7) to
extrapolate higher-temperature near-linear AV/V measurements to zero
temperature. For this purpose, one needs good estimates of B, y, @y, and
V, for the material considered.

3. SUMMARY

In summary, we derived a simple four-parameter relationship for
AV/V(T). All four parameters have simple physical meanings: bulk
modulus, Einstein (or Debye) temperature, Griineisen parameter, and
atomic volume. This relationship permits easy understanding of inter-
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connections among these variables and the thermal expansivity, S(7).
Especially for high-Debye temperature close-packed metals, the relation-
ship predicts a AV/V that agrees well with observation.
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