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A particle with mass m is moving in a one-dimensional potential
oo for |z| > a,
V(z)=< Vo for a/2<|z|<a,
0 for —a/2<z<a/2

In this Problem the parameter a is kept fixed, while V[ is a parameter that can be varied,
from large negative values towards +oo.
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The figure shows a sketch of the ground-state energy E; as a function of V4. It turns out that
FE is a monotonically increasing function of Vj, as are all the other energy eigenvalues.

a. Suppose that Vj is finite. eState without proof the number of zeros in the interval
—a < x <a — and describe the symmetry properties — for the ground state ¢ and the
first excited state 1. ®Which conditions must be satisfied by all energy eigenfunctions v,
for the potential V(x) in the points = = +a and x = +a/2? For the special case Vj =0,
all the energy eigenfunctions are sinusoidal for |z| < a; ¢, = A, sin[k,(z — a)]. eSketch the
ground state 1; and the first excited state vy for V5 = 0.

b. eDetermine the wave numbers k; and ks for the ground state and the first excited state
for the special case 1V = 0. eCheck that the resulting solutions ¢, and 1, satisfy the time-
independent Schrodinger equation, and find the energies E;(0) and E5(0), for the special case
Vo = 0. eWhat are the energies (E;(00) and Fy(00)) when Vj is infinitely high?

c. For a certain negative value of V; (V5 = V, < 0), the ground-state energy E; is equal to
zero (cf the diagram above).
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eUse (among other things) the time-independent Schrodinger equation to find the form of the
ground state v, in the region —a/2 < x < a/2 in this case. ®Sketch 1, for all x. eDetermine
(the negative) potential value V,, based on the sketch and the time-independent Schréodinger
equation.
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d. For a certain positive value of Vy (Vo = Vj, > 0), the ground state energy is equal to 1}
(see the diagram at the top of the preceding page).
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Make a sketch of the ground state ¢, for this case. For this case, we may write

n2k?

Vo= By = 2m

elind a condition that determines the wave number k,. eMake a rough estimate of the wave
number k;, based on the sketch. eFind an accurate value for k, and hence for the potential
value V},, expressed in terms of a.

Question 2 (Counts 25 %)

A particle with mass m is moving in the one-dimensional harmonic oscillator potential V' (x) =
Lmw?a?. The ground state of this system is

2
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g h ’

with the energy FE, = %hw.

a. eUse the formula

2
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to show that the expectation value of the kinetic energy in the ground state may be written
on the form

(K), = l'rnu)2<:c2>g,

g 2

which means that it is equal to the expectation value (V')  of the potential energy. [Hint:
Use that 9¢,/0x = (—mwx/h)y,.] eWhat is (K + V'), for the ground state? eUse this to
find (2?), and (p3 ), for the ground state. eFind also the expectation values (), and (p, ),
for the ground state, and determine the uncertainties (Ax), and (Ap,),, together with the
uncertainty product (Az),(Apy),.
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b. Suppose that this system is at ¢ =0 prepared in (the normalized) initial state

1/4 )
W(a,0) = VIO (T7) e = i)

which is strongly “squeezed” compared to the ground state (see the figure).
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For t >0, the wave function of this system may be expanded in terms of the set of stationary
states of the oscillator (see the formula sheet):

o

i t) = 3 cthnl@)e B0 o= (6, 0(0) = [l @)W(a,0)da.

n=0

eWhat is the physical interpretation of the coefficients ¢,? eWhy is ¢, equal to zero for
n=1,3,5,---7 eWhich symmetry property for ¥(z,t) follows from this?

As a function of ¢, the wave function ¥(z,t) will vary strongly in form and extension but,
after one half of the classical period, T'/2 = 7/w, the probability density is in fact unchanged.
eShow this. [Hint: Start by finding the constant f in the relations

exp[—iE,(t +T/2)/h| = f - exp|—iE,t/h] (n=0,2,4,---),

and use this to find the relation between W(xz, ¢+ T/2) and ¥(z,t).]

c. As a consequence of the squeezing of the initial state, the expectation value (V'), of the
potential energy is a factor 100 less than in the ground state. Thus, at ¢ =0 the particle is
located at the origin, roughly speaking. For the same reason the expectation value ( K '), of
the kinetic energy is a factor 100 larger than in the ground state, so that the particle is fairly
“energetic”. eYou are now invited to speculate in a qualitative way about what happens with
the probability distribution between the times when it is recreated, i.e., between the times
t=0,T/2,T,3T/2 etc. oTry also to make a semiclassical estimate of the average squared
distance from the origin (and hence of the uncertainty Ax) when these quantities are on their
largest. [Hint: How far out does the particle move classically if it has an energy £7 And what
is ( E') in the state V(z,1)7]



Page 5 of 6

Question 3 (Counts 16 %)

a. For a particle with mass m in the one-dimensional harmonic oscillator potential V' (z) =

%mwzmz, the eigenfunctions ¥, (z) given on the formula sheet are the only solutions of the

energy eigenvalue equation which go to zero when = — +o0.

V=00 V(x)

/| 22
7

/] A

/ 2mwox

/

/

4

0 > x

eBased on this, state the results for the wave functions and the energies of the ground state
and the first excited state when the particle is moving in the one-dimensional potential

smw?z?  for x>0,
o0 for x <O0.

v - {

b. An electron is moving in the three-dimensional potential

62

V= Ameqr
00 for 2z <0.

for z>0,
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el'ind, using the known energy eigenfunctions for hydrogenlike systems, the ground-state wave
function for this system and the corresponding energy. eWhat is the energy and the (degree
of) degeneracy for the first excited level?
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Question 4 (Counts 10%)

Give short answers to these four questions:

e In quantum mechanical calculations on atoms and molecules, one usually applies the so-
called Born — Oppenheimer — approximation. What does that mean?

e What is contained in the Pauli principle?

e A (non-linear) molecule with NV atoms has 3N (spatial) degrees of freedom. How many of
these are associated with translation of the molecule, rotation of the molecule, and vibrations
within the molecule?

e Draw and give name to the three different isomers of dibromo-ethene.

Question 5 (Counts 15%)
A chemical equilibrium reaction
A= B
is described by the following energy function E(x):
E
TS
E(TS) +
B
E(B)
A
E(A)
X
Xa X1g X3

Here, E is the total energy of the system, and the reaction coordinate z may (for example) be
the relative deviation from the equilibrium value Ry of a certain interatomic distance in the
system, i.e., x = (R — Ry)/Ro.

e Discuss how the kinetics and the thermodynamic equilibrium between the two states A and
B depend on the various energies given in the figure above.

We may model such a chemical equilibrium with the energy function

354 22
E(x)=E R p—

where Fy = 343 eV.
e Determine x4, x1g and xp. Verify that xrg corresponds to a (local) energy maximum. (Hint:
Consider the second derivative of E.)

Assume that A and B are different conformations of the same molecule (i.e., B may be obtained
from A, and vice versa, by e.g. a rotation around one of the chemical bonds in the system).
e Determine the ratio Ns/Np between the number of molecules in state A and state B in
such a gas in thermodynamic equilibrium at room temperature (7" = 300 K). Will this ratio
become smaller or larger if the temperature is decreased? Give a brief explanation for your
answer.

Given: Boltzmann’s constant kg = 8.617 - 107> eV /K.



Attachment 1: Formulae and expressions (Some of this may turn out to

be useful.)

One-dimensional harmonic oscillator

(f‘éﬂ+»mwx)¢a>—%wm+;waw; (s ) = G
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Ho(y)=1, Hi(y)=2y, H(y)=4y>—2, Hsy)=8y"—12y, ---;
Pibn(@) = Yn(—2) = (—1)" ().

The Laplace operator and angular-momentum operators in polar coordinates
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Angular functions
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Energy eigenfunctions and radial equation, spherically symmetric potential V' (r)

v(r.0,0) = i, 0,0

i) ) = By, Ve =ve + D) <o



Energy eigenfunctions and eigenvalues, hydrogenlike system, V (r) = —Ze?/(4meqr)
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wnlm = Rnl<7')Y2m(9> ¢)7
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Some constants

Aregh?

ag = TR~ 0.520-107° m (Bohr-radien);
mee
e 1

C T dreohe ~ 137 0360 (finstrukturkonstanten);

h2
1o’m.® = —— ~13.6eV (Rydberg-energien).
2meag
Some formulae
sina = (e — e /2 , cosa = (e + e ") /2;
tany = =tan(y +nmw), n=0,%1,---;
coty

1

—r/2a.

I

sinhy

sinhy = 3(e¥ —e™Y); coshy = 1(e! +e7Y); tanhy =

d d
cosh?y — sinh?y = 1; T sinh y = cosh y; — cosh y = sinh y.
Y

dy

cothy  coshy’



Attachment 2. Naming rules in organic chemistry.

Table 1: Some functional groups, ranked according to decreasing priority

Rank | Main group Functional group Prefix Suffix
6]
1 | Carboxylic acid -COOH ~¢—om (carboxy-) -oic acid
o [0}
2 | Carboxylic acid anhydride | -CO-O—-CO- _e—o—e- -oic anhydride
o
3 | Ester t -COOR “¢—o0-r -oate
o
4 | Carboxylic acid halide } -COX e-x halocarbonyl- -oyl halide
5 | Amide -CONH, B amido- -amide
6 | Nitrile -CN —C=N cyano- -nitrile
o
7 | Aldehyde -COH —eom ox0- -al
[0}
8 | Ketone -CO- e 0XO- -one
9 | Alcohol -OH hydroxy- -ol
10 | Thiol -SH mercapto- -thiol
11 | Amine -NH, amino- -amine
12 | Imine >C=N- imino- -imine
13 | Alkene -C=C- -ene
14 | Alkyne -C=C- -yne
15 | Alkane -C-C- -ane
Secondary groups (no priority) | Functional group Prefix Suffix
Ether -C-0-C- alkoxy- -ether
Halide 1 -X halo- (e.g. chloro-)
Nitro -NO, nitro-

T X = a halogen (F, Cl, Br, or I), R

Naming organic compounds:

(usually) an alkyl group (C,Hay,41)

[Prefix(es) including numbering] - [Main skeleton] - [Suffix]

e Suffix: functional group with highest rank

e Main skeleton: longest connected carbon chain, numbered so that the suffix group sits

on the lowest possible number

e Prefix(es) incl numbering: all substituents on the main skeleton, in alphabetical order




