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Sensuren faller i august 2008.

Question 1 (Counts 34 %)

A particle with mass m is moving in a one-dimensional potential

V (x) =


∞ for |x| > a,
V0 for a/2 < |x| < a,
0 for −a/2 < x < a/2.

In this Problem the parameter a is kept fixed, while V0 is a parameter that can be varied,
from large negative values towards +∞.
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The figure shows a sketch of the ground-state energy E1 as a function of V0. It turns out that
E1 is a monotonically increasing function of V0, as are all the other energy eigenvalues.

a. Suppose that V0 is finite. •State without proof the number of zeros in the interval
−a < x < a — and describe the symmetry properties — for the ground state ψ1 and the
first excited state ψ2. •Which conditions must be satisfied by all energy eigenfunctions ψn
for the potential V (x) in the points x = ±a and x = ±a/2? For the special case V0 = 0,
all the energy eigenfunctions are sinusoidal for |x| < a; ψn = An sin[kn(x− a)]. •Sketch the
ground state ψ1 and the first excited state ψ2 for V0 = 0.

b. •Determine the wave numbers k1 and k2 for the ground state and the first excited state
for the special case V0 = 0. •Check that the resulting solutions ψ1 and ψ2 satisfy the time-
independent Schrödinger equation, and find the energies E1(0) and E2(0), for the special case
V0 = 0. •What are the energies (E1(∞) and E2(∞)) when V0 is infinitely high?

c. For a certain negative value of V0 (V0 = Va < 0), the ground-state energy E1 is equal to
zero (cf the diagram above).

•Use (among other things) the time-independent Schrödinger equation to find the form of the
ground state ψ1 in the region −a/2 < x < a/2 in this case. •Sketch ψ1 for all x. •Determine
(the negative) potential value Va, based on the sketch and the time-independent Schrödinger
equation.
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d. For a certain positive value of V0 (V0 = Vb > 0), the ground state energy is equal to V0

(see the diagram at the top of the preceding page).

Make a sketch of the ground state ψ1 for this case. For this case, we may write

Vb = E1 =
h̄2k2

b

2m
.

•Find a condition that determines the wave number kb. •Make a rough estimate of the wave
number kb based on the sketch. •Find an accurate value for kb and hence for the potential
value Vb, expressed in terms of a.

Question 2 (Counts 25 %)

A particle with mass m is moving in the one-dimensional harmonic oscillator potential V (x) =
1
2
mω2x2. The ground state of this system is

ψg =
(
mω

πh̄

)1/4

e−mωx
2/2h̄,

with the energy Eg = 1
2
h̄ω.

a. •Use the formula

〈K 〉ψ =

〈
p2
x

2m

〉
ψ

=
h̄2

2m

∫ ∞
−∞

∣∣∣∣∣∂ψ∂x
∣∣∣∣∣
2

dx

to show that the expectation value of the kinetic energy in the ground state may be written
on the form

〈K 〉g = 1
2
mω2

〈
x2
〉
g
,

which means that it is equal to the expectation value 〈V 〉g of the potential energy. [Hint:
Use that ∂ψg/∂x = (−mωx/h̄)ψg.] •What is 〈K + V 〉g for the ground state? •Use this to

find 〈x2 〉g and 〈 p2
x 〉g for the ground state. •Find also the expectation values 〈x 〉g and 〈 px 〉g

for the ground state, and determine the uncertainties (∆x)g and (∆px)g, together with the
uncertainty product (∆x)g(∆px)g.
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b. Suppose that this system is at t = 0 prepared in (the normalized) initial state

Ψ(x, 0) =
√

10
(
mω

πh̄

)1/4

e−100mωx2/2h̄ ≡ ψb(x),

which is strongly “squeezed” compared to the ground state (see the figure).

For t ≥ 0, the wave function of this system may be expanded in terms of the set of stationary
states of the oscillator (see the formula sheet):

Ψ(x, t) =
∞∑
n=0

cnψn(x)e
−iEnt/h̄; cn = 〈ψn,Ψ(0) 〉 =

∫ ∞
−∞

ψ∗n (x)Ψ(x, 0)dx.

•What is the physical interpretation of the coefficients cn? •Why is cn equal to zero for
n = 1, 3, 5, · · ·? •Which symmetry property for Ψ(x, t) follows from this?

As a function of t, the wave function Ψ(x, t) will vary strongly in form and extension but,
after one half of the classical period, T/2 = π/ω, the probability density is in fact unchanged.
•Show this. [Hint: Start by finding the constant f in the relations

exp[−iEn(t+ T/2)/h̄] = f · exp[−iEnt/h̄] (n = 0, 2, 4, · · ·),

and use this to find the relation between Ψ(x, t+ T/2) and Ψ(x, t).]

c. As a consequence of the squeezing of the initial state, the expectation value 〈V 〉b of the
potential energy is a factor 100 less than in the ground state. Thus, at t = 0 the particle is
located at the origin, roughly speaking. For the same reason the expectation value 〈K 〉b of
the kinetic energy is a factor 100 larger than in the ground state, so that the particle is fairly
“energetic”. •You are now invited to speculate in a qualitative way about what happens with
the probability distribution between the times when it is recreated, i.e., between the times
t = 0, T/2, T, 3T/2 etc. •Try also to make a semiclassical estimate of the average squared
distance from the origin (and hence of the uncertainty ∆x) when these quantities are on their
largest. [Hint: How far out does the particle move classically if it has an energy E? And what
is 〈E 〉 in the state Ψ(x, t)?]
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Question 3 (Counts 16 %)

a. For a particle with mass m in the one-dimensional harmonic oscillator potential V (x) =
1
2
mω2x2, the eigenfunctions ψn(x) given on the formula sheet are the only solutions of the

energy eigenvalue equation which go to zero when x→ ±∞.

•Based on this, state the results for the wave functions and the energies of the ground state
and the first excited state when the particle is moving in the one-dimensional potential

V (x) =

{
1
2
mω2x2 for x > 0,
∞ for x < 0.

b. An electron is moving in the three-dimensional potential

V =

 − e2

4πε0r
for z > 0,

∞ for z < 0.

•Find, using the known energy eigenfunctions for hydrogenlike systems, the ground-state wave
function for this system and the corresponding energy. •What is the energy and the (degree
of) degeneracy for the first excited level?
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Question 4 (Counts 10%)

Give short answers to these four questions:

• In quantum mechanical calculations on atoms and molecules, one usually applies the so-
called Born – Oppenheimer – approximation. What does that mean?

• What is contained in the Pauli principle?

• A (non-linear) molecule with N atoms has 3N (spatial) degrees of freedom. How many of
these are associated with translation of the molecule, rotation of the molecule, and vibrations
within the molecule?

• Draw and give name to the three different isomers of dibromo-ethene.

Question 5 (Counts 15%)

A chemical equilibrium reaction
A ⇀↽ B

is described by the following energy function E(x):

Here, E is the total energy of the system, and the reaction coordinate x may (for example) be
the relative deviation from the equilibrium value R0 of a certain interatomic distance in the
system, i.e., x = (R−R0)/R0.
• Discuss how the kinetics and the thermodynamic equilibrium between the two states A and
B depend on the various energies given in the figure above.

We may model such a chemical equilibrium with the energy function

E(x) = E0

(
35x4

8
− 2x3 +

x2

4

)
where E0 = 343 eV.
• Determine xA, xTS and xB. Verify that xTS corresponds to a (local) energy maximum. (Hint:
Consider the second derivative of E.)

Assume that A and B are different conformations of the same molecule (i.e., B may be obtained
from A, and vice versa, by e.g. a rotation around one of the chemical bonds in the system).
• Determine the ratio NA/NB between the number of molecules in state A and state B in
such a gas in thermodynamic equilibrium at room temperature (T = 300 K). Will this ratio
become smaller or larger if the temperature is decreased? Give a brief explanation for your
answer.

Given: Boltzmann’s constant kB = 8.617 · 10−5 eV/K.



Attachment 1: Formulae and expressions (Some of this may turn out to

be useful.)

One-dimensional harmonic oscillator

(
− h̄2

2m

∂2

∂x2
+ 1

2
mω2x2

)
ψn(x) = h̄ω(n+ 1

2
)ψn(x); 〈ψn, ψk 〉 = δnk;

ψn(x) =
(
mω

πh̄

)1/4 1√
2n n!

e−y
2/2Hn(y), y =

x√
h̄/mω

;

H0(y) = 1, H1(y) = 2y, H2(y) = 4y2 − 2, H3(y) = 8y3 − 12y, · · · ;
P̂ψn(x) ≡ ψn(−x) = (−1)nψn(x).

The Laplace operator and angular-momentum operators in polar coordinates

∇2 =
∂2

∂r2
+

2

r

∂

∂r
− L̂

2

h̄2r2
;

L̂2 = −h̄2

(
∂2

∂θ2
+ cot θ

∂

∂θ
+

1

sin2 θ

∂2

∂φ2

)
, L̂z =

h̄

i

∂

∂φ
;

L̂x =
h̄

i

(
− sinφ

∂

∂θ
− cot θ cosφ

∂

∂φ

)
, L̂y =

h̄

i

(
cosφ

∂

∂θ
− cot θ sinφ

∂

∂φ

)
;

[L̂2, L̂z] = 0, [L̂x, L̂y] = ih̄L̂z, osv.

Angular functions

{
L̂2

L̂z

}
Ylm =

{
h̄2l(l + 1)
h̄m

}
Ylm , l = 0, 1, 2, ...;

∫ 2π

0
dφ
∫ 1

−1
d(cos θ)Y ∗l′m′Ylm = δl′lδm′m;

Y10 =

√
3

4π
cos θ =

√
3

4π

z

r
≡ Ypz , Y1±1 = ∓

√
3

8π
sin θ e±iφ;

Ypx =

√
3

4π

x

r
=

1√
2
(Y1,−1 − Y11), Ypy =

√
3

4π

y

r
=

i√
2
(Y11 + Y1,−1);

Y20 =

√
5

16π
(3 cos2 θ − 1); Y2,±1 = ∓

√
15

8π
sin θ cos θ e±iφ; Y2,±2 =

√
15

32π
sin2 θ e±2iφ.

P̂Ylm = (−1)lYlm.

Energy eigenfunctions and radial equation, spherically symmetric potential V (r)

ψ(r, θ, φ) =
u(r)

r
Ylm(θ, φ);

[
− h̄2

2m

d2

dr2
+ V l

eff(r)

]
u(r) = E u(r), V l

eff(r) ≡ V (r) +
h̄2l(l + 1)

2mr2
, u(0) = 0.



Energy eigenfunctions and eigenvalues, hydrogenlike system, V (r) = −Ze2/(4πε0r)

En =
E1

n2
≡ E1

(l + 1 + nr)2
, E1 = −1

2
(αZ)2mec

2;

ψnlm = Rnl(r)Ylm(θ, φ);

R10 =
2

a3/2
e−r/a; R20 =

1√
2 a3/2

(
1− r

2a

)
e−r/2a; R21 =

1

2
√

6 a3/2

r

a
e−r/2a; a =

a0

Z
.

Some constants

a0 =
4πε0h̄

2

mee2
≈ 0.529 · 10−10 m (Bohr-radien);

α =
e2

4πε0h̄c
≈ 1

137.0360
(finstrukturkonstanten);

1
2
α2mec

2 =
h̄2

2mea2
0

≈ 13.6 eV (Rydberg-energien).

Some formulae

sin a = (eia − e−ia)/2i , cos a = (eia + e−ia)/2;

tan y =
1

cot y
= tan(y + nπ), n = 0,±1, · · · ;

sinh y = 1
2
(ey − e−y); cosh y = 1

2
(ey + e−y); tanh y =

1

coth y
=

sinh y

cosh y
;

cosh2 y − sinh2 y = 1;
d

dy
sinh y = cosh y;

d

dy
cosh y = sinh y.



Attachment 2. Naming rules in organic chemistry.

Table 1: Some functional groups, ranked according to decreasing priority

Rank Main group Functional group Prefix Suffix

1 Carboxylic acid -COOH (carboxy-) -oic acid

2 Carboxylic acid anhydride -CO–O–CO- -oic anhydride

3 Ester † -COOR -oate

4 Carboxylic acid halide † -COX halocarbonyl- -oyl halide

5 Amide -CONH2 amido- -amide
6 Nitrile -CN cyano- -nitrile

7 Aldehyde -COH oxo- -al

8 Ketone -CO- oxo- -one
9 Alcohol -OH hydroxy- -ol

10 Thiol -SH mercapto- -thiol
11 Amine -NH2 amino- -amine
12 Imine >C=N- imino- -imine
13 Alkene -C=C- -ene
14 Alkyne -C≡C- -yne
15 Alkane -C–C- -ane

Secondary groups (no priority) Functional group Prefix Suffix
Ether -C–O–C- alkoxy- -ether
Halide † -X halo- (e.g. chloro-)
Nitro -NO2 nitro-

† X = a halogen (F, Cl, Br, or I), R = (usually) an alkyl group (CnH2n+1)

Naming organic compounds:

[Prefix(es) including numbering] - [Main skeleton] - [Suffix]

• Suffix: functional group with highest rank

• Main skeleton: longest connected carbon chain, numbered so that the suffix group sits
on the lowest possible number

• Prefix(es) incl numbering: all substituents on the main skeleton, in alphabetical order


