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Sensuren faller i uke 24.

Problem 1 (Subproblems a, b, c and d count 5%, 7%, 7% and 7%, respec-

tively)

A particle with mass m is moving in a one-dimensional, symmetric potential

V (x) =


V0 for −b < x < b,
0 for b < |x| < b+ l,
∞ for |x| > b+ l.

Here the width l of the “wells” can be considered to be a fixed length, while the length
2b of the barrier is a variable parameter. Thus, in the limit b→ 0 the potential V (x)
approaches an ordinary box potential (infinite square well) of width 2l.

a. All the states of this symmetric potential are bound states. •What can you then say
about the degree of degeneracy (i.e., the number of independent energy eigenstates for
each energy eigenvalue E)? •What symmetry property and how many zeroes (nodes) does
the ground state have? •Same questions for the first and second excited states. [Proofs
are not required. Do not count the zeroes for x = ±(b+ l) .]
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b. For a given width l of the “wells”, it is possible to choose the barrier height V0 in
such a way that one of the energy eigenfunctions of this potential, namely the one with
two zeroes [x = ±(b+ l) not counted], takes the form

ψ(x) = C = constant for − b < x < b.

•What can you say about the energy E of this eigenstate compared with the barrier height
V0? [Hint: Use the time-independent Schrödinger equation.] •What are the continuity
properties of this energy eigenfunction at the points x = ±b? •Same question for the
points x = ±(b+ l)? (Proof not required.)

c. •Make a sketch of the energy eigenfunction ψ(x), •find the barrier height V0 and the
energy E, and show that these quantities depend on l, but not on b.

d. •How many energy eigenfunctions with lower energy than that found above does one
have for this potential? •Check the result above for the energy E by considering the
limiting case b→ 0.

Problem 2 (Subproblems a, b, c and d each count 7%)

a. A particle with mass m is moving in a one-dimensional potential V (x). This system
is in a state described by the normalised wave function

Ψ(x, t) = C e−a(mx
2/h̄+it).

•Write down the time-dependent Schrödinger equation for this system. •Set in the given
wave function and show that the potential is harmonic, that is, that it can be written as
V (x) = 1

2
mω2x2. (Find ω expressed in terms of a.)

b. •Explain what is meant by a stationary solution of the time-dependent Schrödinger
equation. Show that the solution given above is stationary, and find the energy E.

The expectation value of the potential energy of this state obviously is 〈V 〉 =
1
2
mω2 〈x2 〉. •Use the formula

〈K 〉 =
1

2m

∫
Ψ∗ p̂2

x Ψ dx =
h̄2

2m

∫
|∂Ψ/∂x|2dx

to show that also the expectation value 〈K 〉 of the kinetic energy can be expressed as
1
2
mω2 〈x2 〉 in this case. [Hint: Write ∂Ψ/∂x as Ψ multiplied by a factor, and note that

you don’t need to compute any of the integrals.]
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c. The state above actually is the ground state of the harmonic potential V (x) =
1
2
mω2x2. This can be shown by several methods, one of which is the series expansion

method. An alternative method is to try to minimize 〈K + V 〉ψ for an arbitrarily cho-
sen, normalised spatial wave function ψ(x) (without worrying whether it is an energy
eigenfunction or not): •Start by showing that

〈V 〉ψ + 〈K 〉ψ = 1
2
mω2[(∆x)2

ψ + 〈x 〉2ψ] +
1

2m
[(∆px)

2
ψ + 〈 px 〉2ψ].

[Hint: See the definition of uncertainties on the formula sheet.]
Here, in order to make the right-hand side as small as possible, we can (“without loss of
generality”)

(i) choose ψ(x) real,
(ii) “move” the function ψ(x) along the x axis so that 〈x 〉ψ = 0.

•Show that (i) implies that 〈 px 〉ψ = 0.
In the resulting expression

〈V 〉ψ + 〈K 〉ψ = 1
2
mω2(∆x)2

ψ +
1

2m
(∆px)

2
ψ,

it is now obvious that 〈V 〉ψ can be made arbitrarily small by choosing a function ψ(x)
with sufficiently small “extension” (∆x)ψ but, as we shall see, this is not necessarily the
smartest thing to do. •Suppose that we, for a chosen value of (∆x)ψ, choose our function
ψ(x) so that (∆px)ψ is as small as possible (for the chosen value of (∆x)ψ). State what
the value of this smallest possible size of (∆px)ψ is, expressed in terms of (∆x)ψ.

d. With the choice just mentioned, 〈V 〉ψ+ 〈K 〉ψ becomes a function of (∆x)ψ. In this
function it is convenient to introduce a dimensionless variable D, as follows:

(∆x)2
ψ =

h̄

2mω
D.

•Express 〈V +K 〉ψ in terms of D, and discuss the behaviour of this expression as a func-
tion of D. •What is your conclusion regarding the possibility of finding energy eigenstates
with lower energy than that found in point b above (for the potential at hand)?

Problem 3 (Subproblems a, b and c each count 7%)

An electron is moving in the Coulomb potential

V (r) = − Ze2

4πε0 r
.

By a measurement of the observables E, L2 and a particular component of the angular
momentum, n̂·L (where the unit vector n̂ is unknown so far), this system is prepared in
a state described by the normalised wave function

ψ(r) = R(r)X(θ, φ), where X(θ, φ) = 1
2
Ypx + 1

2

√
3Ypy .
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According to the measurement postulate, ψ(r) must then be a simultaneous eigenfunction
of the operators Ĥ, L̂2 and n̂·L̂ (which are commuting operators), and the respective
eigenvalues must be identical with the values measured in the preparation of this state.

a. •What is the value for L2 measured in the preparation just mentioned? (Use the
formula sheet. Avoid lengthy calculations.)

The function Ypz =
√

3/4π ẑ·r/r obviously is rotationally symmetric around the z

axis. The function X(θ, φ) has the same form seen from another axis, which we can call
n̂. •Find this unit vector n̂ (and state in what direction it points) by writing X(θ, φ) on
the form

X(θ, φ) =

√
3

4π

n̂·r
r

=

√
3

4π

nxx+ nyy + nzz

r
.

b. The fact that Ypz andX have the same form (seen from the ẑ and n̂ axes, respectively)
means that

n̂·L̂X(θ, φ) = 0,

in analogy with ẑ·L̂Ypz = L̂zYpz = 0. This means that n̂·L was measured to zero in the
preparation of the state ψ(r) = R(r)X(θ, φ).

Suppose now that a new measurement is made on this system, this time of the observ-
able Lz, after the preparation of the state ψ(r) by the first measurement. •State what the
possible measured values for Lz are in the new measurement, and find the corresponding
probabilities. [Hint: Express X and hence ψ in terms of spherical harmonics Ylm.] •Why
must such a new measurement necessarily change the state of the system?

c. The energy eigenvalues of the bound states of the present system can in general be
written as

En = −1
2
(αZ)2mec

2

n2
, where n = l + 1 + nr.

Here, nr is the so-called radial quantum number. The figure shows the radial density
[rR(r)]2 for the given state ψ(r), as a function of r/a = Zr/a0.

•Explain what the radial quantum number nr stands for, and state its value for the
prepared state ψ(r) = R(r)X(θ, φ). State the value of the principal quantum number n
for this state.

•What values can the angular-momentun quantum number l take in general for the
system at hand (including the l-value found in point a above), for the present value of
n? How many independent spatial energy eigenfunctions does this system have for the
present value of n?
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Problem 4 (Subproblems 4a, 4b, and 4c count 4%, 8%, and 5%, respectively.)

Acetylene, or ethyne, has chemical formula C2H2. The molecule is linear, with a triple
bond between the two carbon atoms:

The geometry of the molecule is determined by the two bond lengths C-C and C-H, which
in a Hartree–Fock calculation with the basis set 3–21G(*) [i.e., two s–orbitals per H–atom
and three s– and six p–orbitals per C–atom] is 1.188 and 1.051 Å, respectively. We assume
that the four atomic nuclei lie on the z–axis, and that the symmetry centre of the molecule
coincides with the origin.

a. How many electrons are there all together in the acetylene molecule? In the LCAO
approximation, the single particle states (molecular orbitals, ”MOs”) Ψi of the molecule
are written as linear combinations of atomic orbitals (basis functions) φµ:

Ψi =
M∑
µ=1

cµiφµ

The coefficients cµi denote to what extent a given basis function (e.g. the 1s–orbital
φ1s on one of the H–atoms) contributes to MO number i. How many basis functions M
contribute to this sum in acetylene, with the chosen basis set 3–21G(*)? How many MOs
are occupied by electrons in acetylene? (Remember the Pauli principle, in addition to the
fact that each MO represents two single particle states, since an electron may have spin
”up” or spin ”down”. We consider the ground state only.)

b. The triple bond between the two C–atoms is made up of six of the electrons in the
molecule. These electrons occupy, among others, MO number 3 and MO number 7:

Ψ3 Ψ7

Here, the MOs are numbered such that higher numbers correspond to higher energies.
Light grey denotes a surface with a constant positive value of the MO, dark grey denotes
a surface with the corresponding negative value of the MO. Coordinates are chosen such
that the x–axis points into the plane, the y–axis upwards, and the z–axis to the right.
What is the parity of the two MOs Ψ3 and Ψ7 (i.e.: even or odd)?
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One of these two is a so–called σ–orbital, consisting of s–orbitals on all four atoms in
addition to pz–orbitals on the carbon atoms, the other MO is a so–called π–orbital. Which
of the two is a σ–orbital and which is a π–orbital? What kind of basis functions contribute
to this π–orbital? MO number 6 also contributes to the triple bond between the carbon
atoms. This orbital has exactly the same energy as MO number 7. Use this information,
together with the symmetry of the molecule, to determine what kind of basis functions
that contribute to Ψ6.

Four of the electrons in acetylene do not really contribute much to the chemical bonds
between the atoms in the molecule. These electrons occupy the MOs that are illustrated
in the figure below:

These two MOs are, respectively, an antisymmetric and a symmetric linear combination
of the same atomic orbitals. Which atomic orbitals? Which one of these two MOs has
the lower energy? Provide a reason for your answer. What can you say about the energy
of these two MOs, in comparison with, e.g., the energy of Ψ7? (Note: In the figure
illustrating Ψ3 and Ψ7, the value of the MOs is (±) 0.032; in the last figure, the value of
the MOs is (±) 0.010.)

c. Acetylene has seven vibrational modes. The figure below illustrates four of these. The
arrows denote the direction of the displacement of the four atoms in the molecule for each
vibrational movement. Corresponding wave numbers k are given in the unit cm−1. Which
of these vibrational modes are so–called IR–active? (A vibrational mode is IR–active if
the corresponding vibrational movement represents an oscillating electric dipole.) Your
friend, the chemist, talks about ”C–C stretch” and ”C–H stretch” when you discuss the
vibrational modes in acetylene. Which of the four modes in the figure below is she then
referring to?
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Problem 5 (Counts 8%)

With a good catalyst, alkenes like ethene (C2H4) and propene (C3H6) may be polymerized
to polyethene and polypropene, respectively, at relatively low temperatures, in fact down
to zero degrees centigrades. This implies that the activation energy Ea for each ”insertion
reaction”

Pn + A→ Pn+1

is quite small. Here, Pn denotes a polymer chain with n monomers whereas A denotes an
alkene.
We may model this reaction with the energy function

E(x) = E0

(
5x4

8
− 2x3 + x2

)

where x represents a (dimensionless) reaction coordinate and E0 = 10 kcal/mol. We
assume that the reaction starts in the local minimum xi = 0, proceeds in the direction
of increasing x via a transition state (local maximum) at xTS, and ends up in an energy
minimum at xf . Determine xTS and xf , and subsequently the activation energy of the
reaction, Ea = ETS−Ei. Also determine the polymerization energy ∆E = Ef−Ei. Verify
that the three stationary points are minima, alternatively maxima. (Hint: Consider the
second derivative of E.)



Appendix:

Formulae and expressions (Some of these formulae may be useful.)

Uncertainty

(∆A)2 =
〈

(A− 〈A 〉)2
〉

=
〈
A2
〉
− 〈A 〉2 ; ∆A ·∆B ≥ 1

2

∣∣∣〈 i[Â, B̂]
〉∣∣∣ ;

∆x ·∆px ≥ 1
2
h̄.

the Laplace operator and the angular-momentum operators in spherical coor-
dinates

∇2 =
∂2

∂r2
+

2

r

∂

∂r
− L̂2

h̄2r2
;

L̂2 = −h̄2

(
∂2

∂θ2
+ cot θ

∂

∂θ
+

1

sin2 θ

∂2

∂φ2

)
, L̂z =

h̄

i

∂

∂φ
;

L̂x =
h̄

i

(
− sinφ

∂

∂θ
− cot θ cosφ

∂

∂φ

)
, L̂y =

h̄

i

(
cosφ

∂

∂θ
− cot θ sinφ

∂

∂φ

)
;

[L̂2, L̂z] = 0, [L̂x, L̂y] = ih̄L̂z, etc.

Spherical harmonics and other angular functions

{
L̂2

L̂z

}
Ylm =

{
h̄2l(l + 1)
h̄m

}
Ylm , l = 0, 1, 2, ...;

∫ 2π

0
dφ
∫ 1

−1
d(cos θ)Y ∗l′m′Ylm = δl′lδm′m;

Y10 =

√
3

4π
cos θ =

√
3

4π

z

r
≡ Ypz , Y1±1 = ∓

√
3

8π
sin θ e±iφ;

Ypx =

√
3

4π

x

r
=

1√
2
(Y1,−1 − Y11), Ypy =

√
3

4π

y

r
=

i√
2
(Y11 + Y1,−1).

Some constants

a0 =
4πε0h̄

2

mee2
≈ 0.529 · 10−10 m (Bohr radius);

α =
e2

4πε0h̄c
≈ 1

137.0360
(fine structure constant);

1
2
α2mec

2 =
h̄2

2mea2
0

≈ 13.6 eV (Rydberg energy).


