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Sensuren faller i uke 25.

Question 1 (Counts 33 %)

A particle with mass m is moving in a one-dimensional box potential with a barrier in the
middle,

V (x) =


∞ for |x| > a,
0 for a/2 < |x| < a,
Vb for |x| < a/2.

In this problem the parameter a is kept fixed, while we think of Vb as a variable barrier
height (or as the depth of a well if Vb < 0). We want to study the behaviour of the energy
eigenfunctions (mostly the ground state and the first excited state), for varying values of Vb.

a. Consider first the special case Vb = 0. •Explain (using among other things the time-
independent Schrödinger equation) why all the energy eigenfunctions can be written on the
form ψ = A sin[k(x+ a)] inside the box. •Determine the wave numbers k1 and k2 and the
energies E1 and E2 for the ground state ψ1 and the first excited state ψ2, respectively.
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b. •Sketch the ground state ψ1 and the first excited state ψ2 for the special case Vb = 0.
•Which of the properties of ψ1 and ψ2 are valid for all finite values of Vb?

c. Then suppose that Vb is positive and very large compared with the energies found in pkt.
a. •Make sketches of ψ1 and ψ2 for such a case. •Use the sketches to deduce an upper bound
Emax

2 for E2 (so that E2 < Emax
2 for all Vb). [Hint: When Vb is very large, it becomes difficult

to “penetrate” the barrier.] •What happens with E1 and E2 when Vb approaches infinity?

d. •Make sketches of ψ1 and ψ2 also for the case when Vb has a large negative value (deep
well inside the box). •Use the sketches to find approximate results for E1 and E2 for such a
case.

Question 2 (Counts 42 %)

As a simplified model of a hydrogenlike atom we consider an electron moving in the Coulomb
potential

V (r) = − Ze2

4πε0 r
= − Zh̄2

mea0r
.

a. The ground state of this system is described by a wave function on the form

ψ1 =
u(r)

r

√
1

4π
; u(r) = C r e−r/a.

•What is the angular momentum of this state? •What do we mean by saying that this state
is not excited radially? •Find the quantity a and determine the energy eigenvalue (E1) by
setting in u(r) in the radial equation (given on the formula sheet).

b. For the first excited energy level, we can choose to use the four orbitals ψ2s, ψ2px , ψ2py

and ψ2pz , with

ψ2s = R20(r)Y00 = (32πa3)−1/2 (
r

a
− 2) e−r/2a,

ψ2pz = R21(r)Ypz = (32πa3)−1/2 r

a
e−r/2a ẑ·r̂,

and with corresponding formulae for Y2px and Y2py . •Explain why the expectation value 〈 r 〉
(“center of gravity”) of the probability distribution lies at the origin for all these four orbitals.
The wave function ψ2pz is rotationally symmetric with respect to an axis and antisymmetric
with respect to a plane. •Which axis and which plane? •Show explicitly that ψ2px and
ψ2pz are orthogonal. •Why can we state (without explicit calculations) that ψ2s and ψ2pz are
orthogonal?
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c. Instead of ψ2s and ψ2pz just as well use the two linear combinations

ψ± = cψ2s ±
√

1− c2 ψ2pz

as energy eigenfunctions (with 0 < c < 1). The expectation values 〈 r 〉± of the two probability
distributions |ψ±|2 lie on a straight line. •State and explain which line this is. The two
orbitals ψ± are asymmetric and have a “direction”, in the sense that “centers of gravity” 〈 r 〉±
lie outside the origin. •Find the distances from the origin to the points 〈 r 〉±, expressed in
terms of the integral 〈ψ2s, z ψ2pz 〉, which is different from zero. •Show that these distances are
maximal for the same value of the coefficient c which makes ψ+ and ψ− orthogonal. •Make an
estimate of the order of magnitude of the integral 〈ψ2s, z ψ2pz 〉 (and explain how you arrive
at this estimate).

d. We suppose now that our hydrogenlike atom is a Cs atom stripped of 54 electrons, i.e.,
with only one electron in the field of the nucleus with 55 protons. •Find the energy E1 of the
ground state (the 1s orbital) in eV. As a measure of the radius of this orbital we could use the
quantity a from pkt. a, but let us agree that the outer classical turning radius ry is a better
measure (from a chemical point of view). •Find ry for the 1s orbital ixpressed in terms of a0.

Since the valence orbital of Cs is a 6s orbital, it may be interesting to consider the 6s orbital
of the hydrogenlike atom. The figure shows the radial function u60(r) and the square of it, as
functions of r/a0. •Find the energy E6 (in eV) and the outer turning radius ry (expressed in
terms of a0) for u60. •Make an estimate (based on inspection of the figure) of the fraction of
the probability outside this turning radius.

e. The results above are of some use when considering the neutral Cs atom, with all 55
electrons around the nucleus. Fyllingsrekkefølgen ????????????????????of orbitals for heavy
atoms is

1s, 2s, 2p, 3s, 3p, 4s, 3d, 4p, 5s, 4d, 5p, 6s, 4f, 5d, 6p, 7s, 5f, 6d, 7p, · · · .

•Use this to write down the electron configuration (1s2, 2s2, etc) for the neutral Cs atom.
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In addition to the potential V (r) = −55e2/(4πε0r), each electron in Cs “sees” a potential
contribution Vel(r) due to the charge distribution of the other electrons. Qualitatively this
potential contributions looks like this:

Here, RCs is the “radius” of the Cs atom. Suppose that Vel(r) is approximately equal to Vel(0) in
the region where the 1s electrons are moving. •Argue that the 1s orbital in this approximation
is equal to the wave function ψ1 from pkt. a. •What is (in the same approximation) the energy
of the 1s orbital? •Why are the distances between the zeros of the 6s orbital of Cs larger than
the corresponding distances in the figure in pkt. d?



Attachment 1: Formulae and expressions (Some of these formulae may be

useful.)

The Laplace operator and angular momentum operators in spherical coordinates

∇2 =
∂2

∂r2
+

2

r

∂

∂r
− L̂2

h̄2r2
;

L̂2 = −h̄2

(
∂2

∂θ2
+ cot θ

∂

∂θ
+

1

sin2 θ

∂2

∂φ2

)
, L̂z =

h̄

i

∂

∂φ
;

L̂x =
h̄

i

(
− sinφ

∂

∂θ
− cot θ cosφ

∂

∂φ

)
, L̂y =

h̄

i

(
cosφ

∂

∂θ
− cot θ sinφ

∂

∂φ

)
;

[L̂2, L̂z] = 0, [L̂x, L̂y] = ih̄L̂z, osv.

Angular functions

{
L̂2

L̂z

}
Ylm =

{
h̄2l(l + 1)
h̄m

}
Ylm , l = 0, 1, 2, ...;

∫ 2π

0
dφ
∫ 1

−1
d(cos θ)Y ∗l′m′Ylm = δl′lδm′m;

Y10 =

√
3

4π
cos θ =

√
3

4π

z

r
≡ Ypz , Y1±1 = ∓

√
3

8π
sin θ e±iφ;

Ypx =

√
3

4π

x

r
=

1√
2
(Y1,−1 − Y11), Ypy =

√
3

4π

y

r
=

i√
2
(Y11 + Y1,−1);

P̂Ylm = (−1)lYlm.

Energy eigenfunctions and radial equation, spherically symmetricpotential V (r)

ψ(r, θ, φ) =
u(r)

r
Ylm(θ, φ);[

− h̄2

2m

d2

dr2
+ V l

eff(r)

]
u(r) = E u(r), V l

eff(r) ≡ V (r) +
h̄2l(l + 1)

2mr2
, u(0) = 0.

Energy eigenvalues, hydrogenlike system

En =
E1

n2
≡ E1

(l + 1 + nr)2
.

Some constants

a0 =
4πε0h̄

2

mee2
≈ 0.529 · 10−10 m (Bohr-radien);

α =
e2

4πε0h̄c
≈ 1

137.0360
(finstrukturkonstanten);

1
2
α2mec

2 =
h̄2

2mea2
0

≈ 13.6 eV (Rydberg-energien).


