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Question 1 (Counts 34 %)
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A particle with mass m is moving in a spherical well potential

0 for 0<r<a,
V(T)_{VO for r > a.

This system has energy eigenfunctions on the form

w(r
0(r.0.6) = " v,,.0.0)
where u;(r) satisfies a radial equation on one-dimensional form:
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o dr2 eff<7j)‘| w(r) = Ewl(r) (ul(r) ~ 1 for small r) .
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Here,
R+ 1)
2mr?

Vag(r) = V(r) +

is the so-called effective potential.

a. eExplain why possible bound states must have energy FE < V. [Hint: For large r we
have approximately that u) ~ (2m/h*)(Vy — E)uw.]

A solution w;(r) corresponding to a bound state can not have zeros (nodes) for r > a (con-
trary to bound states). eExplain why, based on the curvature properties for r > a.

b. With a suitable choice of the depth Vj of the well, one can obtain that a particular radial
function corresponding to a bound state for [ = 0 looks like this:

Uy

12 1.4

4/

(with two nodes for 0 < r < a). eUse the radial equation to find the form of this function for
r > a, and show that the energy of this state must be approximately equal to Vj (slightly
lower, strictly speaking; cf a above), when you are informed that this function approaches zero
for large r, but extremely slowly.

eFind the form of this function uy(r) also for 0 <r < a, and find the depth V; of the
well, expressed in terms of m and a.

c. eHow many more eigenfunction solutions with FE <V does the above radial equation
have for [ =0 ? (Explain.) Make rough sketches of such (possible) additional solutions u(r).
el'ind an equation which makes it possible to determine wave numbers and energies. (Do not
carry through numerical calculations.)

d. eMake a rough sketch of the effective potential V%2 (r) in the radial equation for [ = 1.
eArgue that the number of solutions u(r) corresponding to bound states for [ = 1 is smaller
than for [ = 0. eExplain also that when [ becomes sufficiently large, then we have no “bound”
solutions w,;(r) at all for the system in question.

Question 2 (Counts 24 %)

If a two-atomic molecule is considered as two point masses m; and my at a constant distance
lr| = |r; — ro| = Ry, then the Hamiltonian can be written as

1.2
H==.
21



Page 3 of 5

a. eState what [ is, expressed in terms of my, my and Ry. eState what the eigenfunctions of
H are, find the energy levels expressed in terms of I and state what the degree of degeneracy
is. eWhat is the physical interpretation of the eigenfunctions?

b. eState what the energies of the ground state and the first and second excited levels are
(expressed in terms of 7). When a gas of such molecules undergoes de-excitation, a set of
spectral lines are emitted. eState what the energies of these spectral lines are (expressed in
terms of 7). eFind the energy difference between the first excited level and the ground state,
in electron volts, when my = my =20m, and Ry = 5.5a¢. (This distance corresponds to a
rather loosely bound system.) Given: m, ~ 1836 m,, h*/(2m.a2) = 13.6 eV.

At room temperature (7" = 300 K), two-atomic molecules at equilibrium will have an average
rotation energy equal to kg7, where kp ~ 8.617-107° eV /K is Boltzmann’s constant. eTo
which energy level of the present molecules does this average energy correspond?

c. Suppose that an ensemble of these molecules are prepared in a rotational state described

by the angular function
5
Y(0) = “E cos? 0.

eShow that this function is normalized. Suppose that the energy is measured for this ensemble.
el'ind the probabilities of measuring the energies of the ground state, the first excited level,
the second excited level etc.

Question 3 (Counts 17 %)

a. A particle with mass m is moving in the one-dimensional oscillator potential V(z) =

%mwaQ. This oscillator is at t =0 prepared in the normalized state

U(x,0) = Cyexp|—mw(x — x0)%/2A).

eState the size of the expectation value (z ), at time ¢ =0. Show that (p,),=0.
It can be shown that (p2), = [[p.¥|*dr and that

= 0
/_Oo(x — o) W(a, 0) e = .

eUse these relations to find the uncertainties (Ax)y and (Ap,)o at t =0 , together with the
product of these uncertainties.

b. Suppose now that the particle is instead moving in the three-dimensional potential

tmw?(2? +y2 4+ 2% for 2 >0,
00 for 2 <0.

Viey.2) = {

el'ind the ground state (expressed in terms of one-dimensional oscillator eigenfuncions; see the
formula sheet) and the energy of this state. eFind also the energy, the degree of degeneracy
and eigenfunctions for the first excited level.
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Question 4 (Counts 20%)

In this question, we will investigate the molecule Ne,, i.e., the dimer of the noble gas neon.
Assume that the molecule lies along the z axis, with the center of mass at the origin. A
Hartree-Fock calculation with a large basis set (1s, 2s, 2p, 3s, 3p, 3d, 4s, 4p, i.e., a total of 19
basis functions pr neon atom) yields a Ne—Ne bond length of 3.25 A in equilibrium. The mass
of a Ne atom is ca 20 m,,. In the LCAO approximation, one constructs the orbital part of the
single particle states (i.e., the molecular orbitals — MO) 1; as linear combinations of the basis
functions ¢,,:

38
Vi = Z CpiPp
p=1

The figure below shows three of the calculated MOs. Light gray denotes a surface of constant
negative value of the orbital, black denotes a surface of corresponding constant positive value.
(Orientation: z axis horizontally, x axis vertically.)

(0 (125 s

e What is the parity of 91, ¥, and 93 (i.e.: even or odd). Give a brief argument for your
answer.

Only basis functions of the type p, and p, contribute to these three MOs. The coefficients
(i.e.: the ¢-s) are all of the same order of magnitude in absolute value, so let us set them equal
to +1 or —1. With atom nr 1 to the left and atom nr 2 to the right, the three MOs in the
figure above are then (in arbitrary order)

ba = py 0
vp = pi+p
vo = py -1

e Which of these are 11, 15, and 95 in the figure above?

e Rank the energies of the orbitals 5 and 3. Give a brief argument for your answer.

The figure on top of the next page shows the calculated Hartree-Fock energy of Nes as a
function of the Ne-Ne distance, between 2.8 and 4.5 A.
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Such a form of the interaction potential V' (x) between the atoms in a twoatomic molecule is
rather well described by the Morse potential

Viz) =V (1- e ) — ;.

Here, x denotes the distance between the two atoms, whereas V), s, and d are three (pos-
itive) parameters that may be fitted to experimental data or accurate quantum mechanical
calculations (as in the figure above).

e Show that the parameter d corresponds to the bond length in equilibrium. What is the
depth of this potential, i.e., V(oc0) — V(d)?

In the vicinity of equilibrium, the Morse potential may approximately be described as a har-
monic oscillator,

1
V(z) ~ §Mu)2 (x —d)* (4 const)
where M is the oscillator mass (for Ney it equals half the mass of a neon atom).

e Find an expression for w, and thereby the vibrational frequency f = w/2m of the twoatomic
molecule, within the harmonic approximation. (Hint: Expand the Morse potential around
x = d.) Good agreement between the Morse potential and the Hartree-Fock calculations is
obtained with x = 2.25 A~!. Use this value and find a numerical value, in the unit eV, for
the lowest vibrational energy (the ”zero point energy”) Ey = hw/2 in Ney. (Hint: The bond
between the neon atoms is weak, so Fjy is not very large. But it is, as expected, considerably
larger than the rotational energy that you calculated in question 2b.)

Question 5 (Counts 5%)

Many—electron states ¥ must be antisymmetric with respect to interchange of the coordinates
of two electrons. Furthermore, ¥ must obey the Pauli principle, i.e., a maximum of one
electron in each single particle state ¢. Show that the (Slater) determinant

1 a() e
V(L2) = 5 () (@)

fulfills these two conditions for a system of two electrons. Here, v;(j) is single particle state
nr ¢, and j denotes both the position and spin coordinates of electron nr j.




Attachment 1: Formulae and expressions (Some of this may turn out to

be useful.)

Relative motion of two-particle system

| i (gat2ar)+ L + V)] 00 = B

“2u \or?2 T roor 2ur?

m1msa
= ——— (reduced mass); r=r; —rs.

m1+m2

Angular functions

r 2 2 o 1
{ ILJ }ylm :{ R(l+1) }Ylm, 1=0.1,2, / d¢/ d(cos 0)Y,E Vi = 016
0 —1

1 3 3 [3 .
Yoo =/ — Yio =1/— cosb = —EEYPZ, Yii1 = Fy/— sinf e*;
s T 8T

5 15 . 15 .
Yoo =14/ (3 cos? 0 — 1), Yoi1 =F\— sin f cos 0 e, Yoio =1/ sin? 6 e
167 T 327

Selection rules for radiative transitions

Al=+1;  Am=0,%1.

Harmonic oscillator

L (—o00 < = < o), the energy eigenfunctions satisfy the

For the potential V = fmw?z?
eigenvalue equation

FLQ 82 1 2.2 1
[_2m8x2 T dmwta — (n+ QW’] Ualr) =0, n=0,12..

with solutions on the form

_ (T 14 1 —mwz?/2h _ .
o) = (T5) " e, €= 2

Hy(&) =1, H\() =2 H(§)=4~2, -1  Hy(=¢)

Some constants

4regh? _10 e? 1
_ ~ 0.529 - 1071 m; = ~ ;
0 e T T e T 137.0360°
h2
%OzZmeCQ = 5 ~ 13.6 eV.
2meaj

h=1.05-10"3 Js; e=16-10""C; m, = 1.67-10"% kg; 1A=10"1"m.



