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Sensuren faller i uke 25.

Question 1 (Counts 34 %)

A particle with mass m is moving in a spherical well potential

V (r) =

{
0 for 0 ≤ r < a,
V0 for r > a.

This system has energy eigenfunctions on the form

ψ(r, θ, φ) =
ul(r)

r
Ylm(θ, φ),

where ul(r) satisfies a radial equation on one-dimensional form:[
− h̄2

2m

d2

dr2
+ V l

eff(r)

]
ul(r) = E ul(r)

(
ul(r) ∼ rl+1 for small r

)
.
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Here,

V l
eff(r) = V (r) +

h̄2l(l + 1)

2mr2

is the so-called effective potential.

a. •Explain why possible bound states must have energy E < V0. [Hint: For large r we
have approximately that u′′l ≈ (2m/h̄2)(V0 − E)ul.]
A solution ul(r) corresponding to a bound state can not have zeros (nodes) for r ≥ a (con-
trary to bound states). •Explain why, based on the curvature properties for r > a.

b. With a suitable choice of the depth V0 of the well, one can obtain that a particular radial
function corresponding to a bound state for l = 0 looks like this:

(with two nodes for 0 < r < a). •Use the radial equation to find the form of this function for
r > a, and show that the energy of this state must be approximately equal to V0 (slightly
lower, strictly speaking; cf a above), when you are informed that this function approaches zero
for large r, but extremely slowly.
•Find the form of this function ub(r) also for 0 ≤ r < a, and find the depth V0 of the

well, expressed in terms of m and a.

c. •How many more eigenfunction solutions with E < V0 does the above radial equation
have for l = 0 ? (Explain.) Make rough sketches of such (possible) additional solutions u(r).
•Find an equation which makes it possible to determine wave numbers and energies. (Do not
carry through numerical calculations.)

d. •Make a rough sketch of the effective potential V l
eff(r) in the radial equation for l = 1.

•Argue that the number of solutions u(r) corresponding to bound states for l = 1 is smaller
than for l = 0. •Explain also that when l becomes sufficiently large, then we have no “bound”
solutions ul(r) at all for the system in question.

Question 2 (Counts 24 %)

If a two-atomic molecule is considered as two point masses m1 and m2 at a constant distance
|r| = |r1 − r2| = R0, then the Hamiltonian can be written as

Ĥ =
L̂2

2I
.
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a. •State what I is, expressed in terms of m1, m2 and R0. •State what the eigenfunctions of
Ĥ are, find the energy levels expressed in terms of I and state what the degree of degeneracy
is. •What is the physical interpretation of the eigenfunctions?

b. •State what the energies of the ground state and the first and second excited levels are
(expressed in terms of I). When a gas of such molecules undergoes de-excitation, a set of
spectral lines are emitted. •State what the energies of these spectral lines are (expressed in
terms of I). •Find the energy difference between the first excited level and the ground state,
in electron volts, when m1 = m2 = 20mp and R0 = 5.5a0. (This distance corresponds to a
rather loosely bound system.) Given: mp ≈ 1836me, h̄2/(2mea

2
0) = 13.6 eV.

At room temperature (T = 300 K), two-atomic molecules at equilibrium will have an average
rotation energy equal to kBT , where kB ≈ 8.617 · 10−5 eV/K is Boltzmann’s constant. •To
which energy level of the present molecules does this average energy correspond?

c. Suppose that an ensemble of these molecules are prepared in a rotational state described
by the angular function

Y (θ) =

√
5

4π
cos2 θ.

•Show that this function is normalized. Suppose that the energy is measured for this ensemble.
•Find the probabilities of measuring the energies of the ground state, the first excited level,
the second excited level etc.

Question 3 (Counts 17 %)

a. A particle with mass m is moving in the one-dimensional oscillator potential V (x) =
1
2
mω2x2. This oscillator is at t = 0 prepared in the normalized state

Ψ(x, 0) = C0 exp[−mω(x− x0)2/2h̄].

•State the size of the expectation value 〈x 〉0 at time t = 0. Show that 〈 px 〉0 = 0.
It can be shown that 〈 p2

x 〉Ψ =
∫
|p̂xΨ|2dτ and that∫ ∞

−∞
(x− x0)2|Ψ(x, 0)|2dx =

h̄

2mω
.

•Use these relations to find the uncertainties (∆x)0 and (∆px)0 at t = 0 , together with the
product of these uncertainties.

b. Suppose now that the particle is instead moving in the three-dimensional potential

V (x, y, z) =

{
1
2
mω2(x2 + y2 + z2) for z > 0,
∞ for z ≤ 0.

•Find the ground state (expressed in terms of one-dimensional oscillator eigenfuncions; see the
formula sheet) and the energy of this state. •Find also the energy, the degree of degeneracy
and eigenfunctions for the first excited level.
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Question 4 (Counts 20%)

In this question, we will investigate the molecule Ne2, i.e., the dimer of the noble gas neon.
Assume that the molecule lies along the z axis, with the center of mass at the origin. A
Hartree-Fock calculation with a large basis set (1s, 2s, 2p, 3s, 3p, 3d, 4s, 4p, i.e., a total of 19
basis functions pr neon atom) yields a Ne–Ne bond length of 3.25 Å in equilibrium. The mass
of a Ne atom is ca 20 mp. In the LCAO approximation, one constructs the orbital part of the
single particle states (i.e., the molecular orbitals – MO) ψi as linear combinations of the basis
functions φµ:

ψi =
38∑
µ=1

cµiφµ

The figure below shows three of the calculated MOs. Light gray denotes a surface of constant
negative value of the orbital, black denotes a surface of corresponding constant positive value.
(Orientation: z axis horizontally, x axis vertically.)

ψ1 ψ2 ψ3

• What is the parity of ψ1, ψ2, and ψ3 (i.e.: even or odd). Give a brief argument for your
answer.

Only basis functions of the type px and pz contribute to these three MOs. The coefficients
(i.e.: the c-s) are all of the same order of magnitude in absolute value, so let us set them equal
to +1 or −1. With atom nr 1 to the left and atom nr 2 to the right, the three MOs in the
figure above are then (in arbitrary order)

ψA = p1
x + p2

x

ψB = p1
z + p2

z

ψC = p1
x − p2

x

• Which of these are ψ1, ψ2, and ψ3 in the figure above?

• Rank the energies of the orbitals ψ2 and ψ3. Give a brief argument for your answer.

The figure on top of the next page shows the calculated Hartree–Fock energy of Ne2 as a
function of the Ne–Ne distance, between 2.8 and 4.5 Å.
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Such a form of the interaction potential V (x) between the atoms in a twoatomic molecule is
rather well described by the Morse potential

V (x) = V0

(
1− e−κ(x−d)

)2
− V0.

Here, x denotes the distance between the two atoms, whereas V0, κ, and d are three (pos-
itive) parameters that may be fitted to experimental data or accurate quantum mechanical
calculations (as in the figure above).

• Show that the parameter d corresponds to the bond length in equilibrium. What is the
depth of this potential, i.e., V (∞)− V (d)?

In the vicinity of equilibrium, the Morse potential may approximately be described as a har-
monic oscillator,

V (x) ' 1

2
Mω2 (x− d)2 (+ const)

where M is the oscillator mass (for Ne2 it equals half the mass of a neon atom).

• Find an expression for ω, and thereby the vibrational frequency f = ω/2π of the twoatomic
molecule, within the harmonic approximation. (Hint: Expand the Morse potential around
x = d.) Good agreement between the Morse potential and the Hartree–Fock calculations is
obtained with κ = 2.25 Å−1. Use this value and find a numerical value, in the unit eV, for
the lowest vibrational energy (the ”zero point energy”) E0 = h̄ω/2 in Ne2. (Hint: The bond
between the neon atoms is weak, so E0 is not very large. But it is, as expected, considerably
larger than the rotational energy that you calculated in question 2b.)

Question 5 (Counts 5%)

Many–electron states Ψ must be antisymmetric with respect to interchange of the coordinates
of two electrons. Furthermore, Ψ must obey the Pauli principle, i.e., a maximum of one
electron in each single particle state ψ. Show that the (Slater) determinant

Ψ(1, 2) =
1√
2

∣∣∣∣∣ ψ1(1) ψ1(2)
ψ2(1) ψ2(2)

∣∣∣∣∣
fulfills these two conditions for a system of two electrons. Here, ψi(j) is single particle state
nr i, and j denotes both the position and spin coordinates of electron nr j.



Attachment 1: Formulae and expressions (Some of this may turn out to

be useful.)

Relative motion of two-particle system

[
− h̄

2

2µ

(
∂2

∂r2
+

2

r

∂

∂r

)
+

L̂2

2µr2
+ V (r)

]
ψ(r) = Eψ(r);

µ =
m1m2

m1 +m2

(reduced mass); r = r1 − r2.

Angular functions

{
L̂2

L̂z

}
Ylm =

{
h̄2l(l + 1)
h̄m

}
Ylm , l = 0, 1, 2, ...;

∫ 2π

0
dφ
∫ 1

−1
d(cos θ)Y ∗l′m′Ylm = δl′lδm′m;

Y00 =

√
1

4π
, Y10 =

√
3

4π
cos θ =

√
3

4π

z

r
≡ Ypz , Y1±1 = ∓

√
3

8π
sin θ e±iφ;

Y20 =

√
5

16π
(3 cos2 θ − 1), Y2,±1 = ∓

√
15

8π
sin θ cos θ e±iφ, Y2,±2 =

√
15

32π
sin2 θ e±2iφ.

P̂Ylm = (−1)lYlm.

Selection rules for radiative transitions

∆l = ±1; ∆m = 0,±1.

Harmonic oscillator

For the potential V = 1
2
mω2x2 (−∞ < x < ∞), the energy eigenfunctions satisfy the

eigenvalue equation[
− h̄2

2m

∂2

∂x2
+ 1

2
mω2x2 − (n+ 1

2
)h̄ω

]
ψn(x) = 0, n = 0, 1, 2, ...,

with solutions on the form

ψn(x) =
(
mω

πh̄

)1/4 1√
2nn!

e−mωx
2/2h̄Hn(ξ), ξ =

x√
h̄/mω

;

H0(ξ) = 1, H1(ξ) = 2ξ, H2(ξ) = 4ξ2 − 2, · · · ; Hn(−ξ) = (−1)nHn(ξ).

Some constants

a0 =
4πε0h̄

2

mee2
≈ 0.529 · 10−10 m; α =

e2

4πε0h̄c
≈ 1

137.0360
;

1
2
α2mec

2 =
h̄2

2mea2
0

≈ 13.6 eV.

h̄ = 1.05 · 10−34 Js; e = 1.6 · 10−19 C; mp = 1.67 · 10−27 kg; 1 Å = 10−10 m.


