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1. Quantum mechanical calculations on molecules
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In principle, we have a simple and well defined problem. We have a number of nuclei (A, B, ...)
and a number of electrons (i, j, ...) in positions RA, RB, ..., ri, rj , ... The possible states Ψ
of the complete manybody system, and the corresponding energy eigenvalues E are determined
by the Schrödinger equation

HΨ = EΨ

Here,
H = K + V,

with quantum mechanical operator for kinetic energy,

K =
∑

i

− h̄2

2m
∇2

i +
∑

A

− h̄2

2MA

∇2
A

and potential energy,
V =

∑

i<j

Vij +
∑

A<B

VAB +
∑

i,A

ViA + Vext

where the various interaction terms are

Vij =
e2

4πε0rij

VAB =
ZAZBe

2

4πε0RAB

ViA =
−ZAe

2

4πε0riA

whereas Vext represents an external potential, e.g. due to an external electromagnetic field, if
such a thing is present. In these expressions, m = the electron mass, MA = the mass of nucleus
nr A, and ZA = the atomic number of atom nr A.
To solve the Schrödinger equation for the manybody system means finding eigenfunctions Ψn

and corresponding energy eigenvalues En. The ground state, then, is the Ψ that yields the
lowest energy E. The wave functions Ψ will be manybody states that depend upon the electron
coordinates ri and the nuclear coordinates RA:

Ψ = Ψ(r1, r2, . . . ,R1,R2, . . .)

In general, exact solutions are not possible. Various types of approximations are necessary.
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The Born-Oppenheimer approximation (Hemmer 7.4)
The nuclei are much heavier than the electrons: MA ≫ m. Hence, the nuclei will typically move
much more slowly than the electrons: vA ≪ ve. Then, it will be a reasonable approximation
to assume that the nuclei are at rest when solving for the movement of the electrons. The
Born-Oppenheimer approximation corresponds to solving the Schrödinger equation with fixed
values for the nuclear coordinates RA. Then, we have

K =
∑

i

− h̄2

2m
∇2

i

and

V =





∑

i<j

Vij +
∑

i,A

ViA



+

[

∑

A<B

VAB + Vext

]

.

Here, the terms in the first bracket depend upon the electron coordinates, whereas the terms
in the second bracket do not.
After having solved the ”electron problem”, the nuclear movement may be investigated. The
energy E, i.e., the ground state solution of HΨ = EΨ, now represents the potential that acts
upon the nuclei. For example, the atoms in a molecule which is in (or near) an equilibrium
configuration, will ”feel” a potential approximately equal to that of a harmonic oscillator.
Then, the atoms will oscillate back and forth, around their equilibrium positions, with certain
vibrational frequencies. More about this later.

The Hartree and the Hartree-Fock approximations (Hemmer 9.3)
These approximations are based on the following idea: Treat the manybody system as a system
of independent electrons moving in an effective potential V (r), where V (r) describes both the
attraction due to the nuclei and the repulsion due to all the other electrons.

The Hartree method

(D. R. Hartree, 1897-1958, UK)
Assume that the electrons are in single particle states (or: orbitals) ψ(r). Then, |ψi(ri)|2 is
the probability of finding electron nr i in the position ri, and −e|ψi(ri)|2 represents the charge
density in position ri due to electron nr i.
Hence, the potential felt by electron nr j is

V (rj) = −
∑

A

ZAe
2

4πε0rjA

+
∑

i6=j

∫

e2|ψi(ri)|2
4πε0rij

d3ri

and the Schrödinger equation (SE) for electron nr j becomes

[

− h̄2

2m
∇2

j + V (rj)

]

ψj(rj) = Ejψj(rj)

Here, the expression inside the brackets on the left side is the Hamiltonian Hj for electron nr
j. Since Hj depends on the wave functions ψi (i 6= j) of all the other electrons, the problem
must be solved iteratively:

• guess an initial potential V (0)(r)
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• solve the SE and determine wave functions {ψi}(0)

• calculate a new potential V (1)(r) by letting the electrons occupy the wave functions {ψi}(0)

with the lowest energy

• solve the SE and determine wave functions {ψi}(1)

• calculate a new potential V (2)(r) . . .

and so on, until so-called self-consistency, which is achieved when

{ψi}(n) ≃ {ψi}(n−1)

with the desired accuracy. A method like this is usually called SCF (”Self Consistent Field”).

The Hartree-Fock method

(V. A. Fock, 1898-1974, USSR)
In the Hartree method, it is easy to obey the Pauli principle (Hemmer 8.5), i.e., no more than
one electron in each single particle state, simply by constructing the potential in such a way
that the lowest energy wave functions are filled with one electron in each.
In the Hartree-Fock method, one also makes sure the manybody state Ψ is antisymmetric with
respect to an interchange of the coordinates of any two electrons. (Keywords here are product
wave functions in the Hartree method, and Slater determinants in the Hartree-Fock method,
but for details, we refer to later courses in quantum mechanics, e.g., TFY4210 Applied quantum
mechanics.) In the exercises in Spartan, the SE is solved for various molecular systems with
the Hartree-Fock method.

LCAO: Linear Combination of Atomic Orbitals

Now, assume we want to solve the SE for a molecule. The following idea then seems reasonable:
Assume that the single particle states ψi in the molecule have certain similarities with (the well
known) wave functions of the hydrogen atom.
After all,

a molecule = atom + atom + atom + . . .

so why should we not be able to write

a molecular state = atomic state + atomic state + atomic state + . . .?

In other words, we try to write the molecular states, or rather molecular orbitals (MO), as
linear combinations of atomic states known from the H atom, or at least functions very similar
to them:

ψi =
M
∑

µ=1

cµiφµ , i = 1, 2, . . .

Here,

• ψi = molecular orbital nr i

• φµ = atomic state, or basis function nr µ
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• cµi = molecular orbital coefficients, revealing to what extent the basis function φµ con-
tributes to MO ψi

For each type of atom (i.e., H, He, Li, . . .), one chooses (or constructs, or calculates) a basis

set {φµ}, i.e., (orthogonal) basis functions φ1, φ2, . . . , φM .
Here, we may, as a rule of thumb, assume that a larger M (i.e. more basis functions in the basis
set) will give us more accurate calculations. However, more basis functions means a heavier
numerical job, of course.
Suppose the molecule has 2N electrons. The ground state is then given by the MO coefficients
{cµi} (µ = 1, 2, . . . ,M ; i = 1, 2, . . . , N) that yields N molecular orbitals ψ1, ψ2, . . . , ψN such
that the energy becomes as small as possible.
Why N MOs for 2N electrons? Because the Pauli principle limits the number of electrons to
1 pr electron state. Each state consists of an orbital part (here: the MO) and a spin part.
A given electron may have spin up or spin down, i.e., two possibilities. Hence, we may put 2
electrons in a particular MO, one with spin up and one with spin down. Hence, 2N electrons
will occupy N MOs.
In programs like Spartan, it is common practice to use so-called gaussian functions as basis
functions:

φ(r) = φ(x, y, z) = Cxaybzce−αr2

Here, C is a normalization constant. From the H atom, we know the various wave functions,
classified according to the value of the quantum number l for the angular momentum: s, p, and
d orbitals correspond to l = 0, 1, 2 etc. The integral exponents a, b, c correspondingly yields

• s orbitals: a = b = c = 0

• p orbitals: a = 1 or b = 1 or c = 1 (px, py, pz, respectively), the two others zero

• d orbitals: a+ b+ c = 2

etc. For a given value of l, we have 2l + 1 possible states, one state for each value of the
quantum number m = −l, . . . , l (Hemmer 5.4). That yields 1 s state and 3 p states. For the
d states, l = 2, i.e., degeneracy equal to 5. With the gaussians degenerasjonsgrad lik 5. Med
gaussfunksjonene

φ(x, y, z) = Cxaybzce−αr2

,

one seems to have 6 possibilities (a = 2, b = 2, c = 2, a = b = 1, a = c = 1, b = c = 1). The 5
”correct” d orbitals, i.e., those known from the hydrogen atom, are obtained by using

φxy = xye−αr2

φxz = xze−αr2

φyz = yze−αr2

together with two linear combinations of the remaining three:

φx2−y2 =

√

3

4
(φxx − φyy)

φ3z2−r2 =
1

2
(2φzz − φxx − φyy)
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(Here, we didn’t care too much about normalization...) The final one,

φr2 =
√

5 (φxx + φyy + φzz) ,

is spherically symmetric, i.e., its symmetry is that of an s orbital, so this is simply not a
d orbital. In conclusion: The Spartan program uses all the 6 d-type basis functions, when
constructing the 5 correct d orbitals. The sixth, φr2 , with s symmetry is not used.

If you examine the wave functions of the H atom, you will notice that they have exponentials
of the form (Hemmer 5.7)

e−αr

and not
e−αr2

The main reason for using the latter type, is that integrals like
∫

φ∗
µφµ d

3r

become simpler to solve. A disadvantage is that the chosen (gaussian) functions approach
zero much too fast when r becomes large. Moreover, they have the wrong shape when r → 0.
Therefore, one must use more gaussian functions than functions of the type exp(−αr) (so-called
Slater orbitals) to achieve the same accuracy in the calculations.

In the exercises in Spartan, the so-called 3-21G basis set will be used. Then we include the
following basis functions for the different atoms:

• H: 2 s orbitals: 1s, 2s

• C: 3 s and 2×3 p orbitals: 1s, 2s, 2px, 2py, 2pz, 3s, 3px, 3py, 3pz

• Cl: 4 s, 3×3 p and 6 d orbitals: 1s, 2s, 2px, 2py, 2pz, 3s, 3px, 3py, 3pz, 3dxx, 3dyy, 3dzz,
3dxy, 3dxz, 3dyz, 4s

For N and O, one uses the same number of functions as for C, i.e., 3 s and 2×3 p orbitals, a
total of 9.

Example: In the molecule C4H7Cl, the MOs are written as linear combinations of 4·9+7·2+19 =
69 basis functions. The number of electrons in this molecule is 4 · 6 + 7 · 1 + 17 = 48. This
means that the MOs Ψ1,Ψ2, . . . ,Ψ24 are occupied by electrons (remember: 2 electrons in each
MO), whereas MOs Ψ25, . . . ,Ψ69 are unoccupied (empty).

As mentioned earlier, the MOs {Ψi} (or, the MO coefficients {cµi}) are calculated iteratively,
for example with the Hartree-Fock method.

Geometry optimization, energy minimization

Assume now that we have performed a Hartree-Fock calculation and found MOs {Ψi} with
corresponding energy eigenvalues {Ei} for a number of atoms A in fixed positions {Rj} (j =
1, 2, . . . , A).

6



The next natural question may be: In which positions {Rj0} will we find the atoms of the
molecule in equilibrium? The equilibrium positions, and hence the geometry of the molecule,
is determined by the requirement that the energy E of the system be as low as possible. The
energy E depends parametrically on the atom positions {Rj}.

Example: Two-atomic molecule. The molecular geometry is then determined by a single co-
ordinate, namely R = the distance between the two atoms. The energy, as a function of the
distance R, typically look something like this:

R0

E

R

In other words, a strong repulsion if the interatomic distance becomes very small, and a weak
attraction when the distance becomes large. Minimum energy corresponds to R = R0 = the
equilibrium distance between the two atoms, i.e., the bond length. From the figure, we see that
the equilibrium geometry is characterized by

E ′(R0) =

(

dE

dR

)

R=R0

= 0

E ′′(R0) =

(

d2E

dR2

)

R=R0

> 0

The bond length R0 may be found by iteration. Assume that E(R) may be approximated with
a 2. order Taylor polynomial in the vicinity of R = R0:

E(R) ≃ E(R0) + (R−R0)E
′(R0) +

1

2
(R−R0)

2E ′′(R0)

Differentiation once and twice yields, respectively,

E ′(R) ≃ E ′(R0) + (R− R0)E
′′(R0) = (R −R0)E

′′(R0)

and
E ′′(R) ≃ E ′′(R0)

Solving with respect to R0 yields

R0 ≃ R− E ′(R)

E ′′(R0
≃ R− E ′(R)

E ′′(R)
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Hence, the following iteration scheme should work, assuming that we start with an R not too
far away from R0:

• guess an initial R(1)

• calculate the corresponding energy E(R(1)) and its derivative, E ′(R(1)), and second deriva-
tive, E ′′(R(1))

• calculate a new length

R(2) = R(1) − E ′(R(1))

E ′′(R(1))

• calculate the corresponding energy E(R(2)) and its derivative, E ′(R(2)), and second deriva-
tive, E ′′(R(2))

• calculate a new length

R(3) = R(2) − E ′(R(2))

E ′′(R(2))

etc etc, until convergence is achieved. The old and new length in iteration step nr n is

R(n+1) = R(n) − E ′(R(n))

E ′′(R(n))
,

and a convergence criterion must be specified, e.g.,

|R(n+1) − R(n)| < δ,

where δ is a suitably chosen (small) length, e.g., 0.001 Å.

In a molecule with A atoms, the geometry will be determined by 3A coordinates, e.g., xj , yj

and zj for atom nr j (j = 1, 2, . . . , A). A generalization of the method described above then
becomes:
The molecular geometry is given by the vector

R = (x1, y1, z1, x2, y2, z2, . . . , xA, yA, zA)

The relation between the old and the new geometry in iteration step nr n becomes

R
(n+1) = R

(n) − (∇E)(n) ·
(

H
(n)
)−1

with

∇E =

(

∂E

∂x1
,
∂E

∂y1
,
∂E

∂z1
, . . . ,

∂E

∂xA
,
∂E

∂yA
,
∂E

∂zA

)

and the Hessian matrix

H =











∂2E
∂x2

1

∂2E
∂x1∂y1

· · · ∂2E
∂x1∂zA

...
...

∂2E
∂zA∂x1

· · · · · · ∂2E
∂z2

A











i.e., the matrix with matrix elements equal to the second derivative of the energy with respect
to all possible combinations of two coordinates.
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Vibrational frequencies

As mentioned earlier, the atoms in a molecule will oscillate back and forth around their equilib-
rium position. Again, it is illustrative to examine the simplest possible example, a two-atomic
molecule:

R0

E

R

We see that the two atoms of the molecule move in a potential E(R) which, in the vicinity of
equilibrium, to a good approximation may be regarded as harmonic (i.e., quadratic) (dashed
curve in the figure):

E(R) ≃ 1

2
mω2(R−R0)

2

(m = the mass of the oscillator = the reduced mass = m1m2/(m1 + m2) for a two-atomic
molecule if we have atoms with mass m1 and m2) Then we know that the system will perform
oscillations around the equilibrium distance R0, with frequency f = ω/2π. The vibrational
frequency is determined by (the square root of) the curvature of the potential:

f =
ω

2π
=

1

2π

√

E ′′(R0)

m

We generalize (without details!) to an A-atomic molecule: The Hessian matrix H then con-
tains all the information of the possible vibrational movements (so-called normal modes) and
the corresponding vibrational frquencies in the molecule. Diagonalization of H yields eigen-
values that are proportional to ω2

α (α = 1, 2, . . . , 3A). The corresponding eigenvectors Aα have
elements Aαi (i = 1, 2, . . . , 3A) that denote the amplitude of the displacement of the various
atoms (in the x−, y−, and z− directions) in the different normal modes α.
For a non-linear molecule (i.e., the atoms do not all lie on a straight line), 6 of the eigenvalues
ω2

α will be zero. These correspond to pure translation (3 of them) and pure rotation (3 of them)
of the whole molecule. In other words, there are 3A− 6 vibrational modes for a molecule with
A atoms.
For a linear molecule (e.g., CO2 and C2H2), only 5 of the eigenvalues ω2

α will be zero: There are
still 3 degrees of freedom associated with pure translation of the molecule, but only 2 degrees
of freedom associated with rotation. (Rotation around the linear axis of the molecules does not
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represent any kinetic energy, at least only a negligible kinetic energy, since the corresponding
moment of inertia is zero, or at least very small.)

Example: The water molecule, H2O, has 3 atoms. It is not linear, the angle H-O-H is ca 105
degrees. The number of degrees of freedom is 9. The number of vibrational modes is 9 - 6 =
3. The figure below denotes the wave number k (i.e., the wave number of an electromagnetic
wave with frequency f = c/λ = ck/2π) and, with arrows, the corresponding movement of the
three atoms in the molecule for each normal mode:

H H

O

H H

O

H H

O

1595 cm −1 3652 cm −1 3756 cm −1

Notice that the vibrational movement is such that the center of mass of the molecule is always
at rest.

Chemical reactions and equilibria

In connection with chemical reactions, we will typically be interested in two things:

• The kinetics: How fast is a chemical reaction?

• The thermodynamics: To what extent does the reaction proceed, from reactant(s) to
product(s)? (I.e., provided we wait long enough...)

Let us examine a chemical reaction
A ⇀↽ B

Here, A may represent one or more reactants, and B may correspondingly represent one or
more products. The energy E of the system will typically be as in the figure below, along some
kind of reaction coordinate R:

RA RTS RB

Ea

E∆

E

R

E(TS)

E(A)

E(B)

A

TS

B

Here, R may e.g. be the distance between two atoms, such that a bond is broken when R is
increased from RA to RB. The reaction proceeds via a (local) energy maximum, the so-called
transition state, denoted as TS.
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The speed of the reaction (the kinetics) is determined by the activation energy (the energy
barrier)

Ea = E(TS) − E(A)

in that the reaction rate k will depend exponentially upon the ratio between Ea and the available
thermal energy kBT :

k ∼ e−Ea/kBT

Provided we wait long enough, a thermodynamic equilibrium will be established between reac-
tant(s) A and product(s) B. The equilibrium is determined by the energy difference

∆E = E(A) − E(B)

in that the ratio between concentrations [A] and [B] will depend exponentially upon the ratio
between ∆E and kBT :

[A]

[B]
= e−∆E/kBT

Comment: Above, we are rather sloppy when we refer to the ”energy”. For instance, we say
nothing about what kind of experimental conditions we have, whether the pressure or the
volume is kept constant and so on. Such details will determine which energy function is the
relevant one: the enthalpy, the Helmholtz free energy, or the Gibbs free energy, cf courses like
TMT4110 Chemistry, Thermal physics, and Statistical physics. Let us here avoid all such details
and simply assume that E(R) reflects the relevant energetic conditions, both with respect to
the kinetics and with respect to the thermodynamics.

Quantum mechanical modeling of chemical reactions

Several strategies are possible if we wish to model a chemical reaction with quantum mechanical
methods. Here, only one method is described. It is based on identifying a sensible reaction
coordinate R, and then change this stepwise, starting from the reactant geometry A. Let us
illustrate the method with a concrete example (see exercise 2).

Chemical reaction that we want to model:

ClCH3 + Br− → BrCH3 + Cl−

Here, the anion Br− will ”attack” the C atom from ”behind”, such that the bond between C
and Cl is broken while a new bond between Br and C is formed.
The reactant A will be a ”complex”, with Br− ”coordinated” to the CH3Cl molecule, with a
certain equilibrium distance RA between Br− and C. The product B will be a similar complex,
but this time with Cl− coordinated to the CH3Br molecule, and with a (shorter) distance RB

between Br and C.
We choose the Br-C distance as reaction coordinate and change it stepwise, from the initial
value RA to the final value RB. Let the step size be ∆R.
First, an unconstrained geometry optimization of the coordinated complex A is performed.
This gives us the equilibrium distance RA and the corresponding energy EA.
Next, the Br-C distance is changed to R1 = RA − ∆R and kept fixed, while the rest of the
geometry of the system is optimized. This gives us the point (R1, E1) on the energy curve
E(R).
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And in this way we continue. In step nr n, we have Rn = RA − n · ∆R, and when all other
degrees of freedom have been optimized, we obtain the point (Rn, En) on the energy curve. In
step nr N , with

N =
RA −RB

∆R
,

we have RN = RA −N · ∆R = RB, i.e., we have modeled through the reaction, all the way to
the product B, which is here the BrCH3 molecule, with Cl− coordinated to the C atom.
A plot of E as a function of Rj will look something like this (note: decreasing R to the right
in the figure):

RA RBR1

E

E(TS)

E(A)
A

TS

B

R∆
R2

R
E(B)

The activation energy is now calculated to be

Ea = E(TS) − E(A)

whereas
∆E = E(A) − E(B)

We start and end in energy minima A and B, characterized by a positive curvature of the energy
curve E(R). In general, an energy minimum will be characterized by only positive eigenvalues

of the Hessian matrix H .

The reaction proceeds via a local energy maximum TS, characterized by a negative curvature of
the energy curve E(R). In general, such a transition state will be characterized by one negative

eigenvalue of the Hessian matrix H . (While the remaining eigenvalues are positive.)
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2. Nomenclature in organic chemistry

Let us start with a couple of simple examples (assumed to be known from TMT4110 Chemistry):

C C C C

C

1 2 3 4

Appendix, Figure 1

We identify the longest carbon chain and number the atoms in this chain such that the most
important substituent is placed on the lowest possible number. Then we have here a butane,
with a methyl substituent in position 2. Hence, the compound is 2-methyl-butane.

C C C C

4

C

C

C

31 2

5

Appendix, Figure 2

Here, the longest carbon chain has 5 C atoms. We put numbers such that the double bond
comes at the lowest possible number. This yields a pent-2-ene (or: 2-pentene), with methyl
substituents in positions 3 and 4. Hence, the name is 3,4-dimethyl-pent-2-ene (or: 3,4-dimethyl-
2-pentene).

But how to figure out the fact that this compound,

NH 2

C C C C C

O

OH
5 4 2

1

3

Vedlegg, Figur 3

should have the name 2-amino-pent-3-enoic acid? We need some rules. The name of the
compound consists of 3 parts:

• One or several prefixes, including numbering

• The main skeleton

• The suffix
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First, we identify the suffix. The rules say that we should choose the functional group in
the molecule with the highest priority, according to Table 1 (below). The main skeleton is
then determined by the longest carbon chain. The prefix of the name must finally contain
information about all the substituents (except the one promoted to suffix, of course), including
their position. The numbering is done so that the suffix sits at the lowest possible number
on the carbon skeleton. One could ask if the carbon atom in, say, the carboxylic acid group
-COOH should be counted when naming the skeleton. The answer is yes, also if the suffix is
an ester, an amide, a nitrile, an aldehyde, a ketone etc.

Let us look at some more examples.

Example 1:

H 2N C C C

OH

C
12

34

C

Appendix, Figure 4

This could be an alcohol or an amine. According to Table 1, alcohol has higher priority
than amine, so it must be an alcohol. The skeleton is C-C-C-C, i.e., butane. We have two
substituents, one methyl (CH3) and one amino ((NH2) gorup. We number the skeleton so that
the suffix group sits at the lowest possible number. Here, this implies putting -OH on carbon
nr 2. Hence, the methyl group is in position 3, and the amino group in position 4. The name is

3-methyl-4-amino-butan-2-ol
(or 3-methyl-4-amino-2-butanol)

Example 2:

NH 2

NH 2

C C C C C C
23456 1

Appendix, Figure 5

The functional group with highest priority is -NH2, and since we have two of them, this becomes
a diamine. The skeleton has 6 C atoms, with a double bond between nr 4 and 5. The amino
groups should sit on the lowest possible numbers, here nr 2. That’s it, so the name is

hex-4-ene-2,2-diamine
(or 4-hexene-2,2-diamine)
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Example 3:

C C C C

O

4 2

1

3
ON

OH

C C

Appendix, Figure 6

Highest priority for the group -COOR, with R = C2H5, i.e. ethyl. So the compound is an ester,
and the name should end with -oate or -ate. (If we had R = H, we would have had a carboxylic
acid.) The carbon skeleton starts with the carbon atom of the ester group and consists of 4 C
atoms, with a double bond between nr 2 and 3. Hence, this is a but-2-enoate (or: 2-butenoate),
and with R = ethyl, this becomes an ethyl-but-3-enoate. Between ”ethyl” and ”but-2-enoate”,
we must say something about the substituents. Here, we have a hydroxy group in position 3
and a nitrile group in position 4. So, I believe the name must be

Ethyl-4-cyano-3-hydroxy-but-2-enoate
(or Ethyl-4-cyano-3-hydroxy-2-butenoate)

The substituents (here, cyano and hydroxy) in alphabetical order, which I forgot to mention.
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This page will be an appendix to the questions at the exam.

Table: Some functional groups, ranked according to decreasing priority

Rank Main group Functional group Prefix Suffix

1 Carboxylic acid -COOH C

O

OH (carboxy-) -oic acid

2 Carboxylic acid anhydride -CO–O–CO- C

O

O C

O

-oic anhydride

3 Ester † -COOR C

O

O R -oate

4 Carboxylic acid halide † -COX C

O

X halocarbonyl- -oyl halide

5 Amide -CONH2
NH 2C

O

amido- -amide
6 Nitrile -CN C N cyano- -nitrile

7 Aldehyde -COH C

O

H oxo- -al

8 Ketone -CO- C

O

oxo- -one
9 Alcohol -OH hydroxy- -ol

10 Thiol -SH mercapto- -thiol
11 Amine -NH2 amino- -amine
12 Imine >C=N- imino- -imine
13 Alkene -C=C- -ene
14 Alkyne -C≡C- -yne
15 Alkane -C–C- -ane

Secondary groups (no priority) Functional group Prefix Suffix
Ether -C–O–C- alkoxy- -ether
Halide † -X halo- (e.g. chloro-)
Nitro -NO2 nitro-

† X = a halogen (F, Cl, Br, or I), R = (usually) an alkyl group (CnH2n+1)

Naming organic compounds:

[Prefix(es) including numbering] - [Main skeleton] - [Suffix]

• Suffix: functional group with highest rank

• Main skeleton: longest connected carbon chain

• Prefix(es) incl numbering: all substituents on the main skeleton
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3. Stereochemistry

Stereochemistry is about compounds with the same chemical formula, but compounds that are
not identical. We speak of different isomers.
We classify isomers as

• constitutional isomers: different order of the atoms/substituents

• stereo isomers: same order, but different spatial positions of the atoms/substituents

For example: 1-butene and 2-butene are different constitutional isomers of C4H8. Here, we will
take a closer look at stereo isomers.

Stereo isomers may be divided into two groups:

• Enantiomers: compounds that are each others mirror images

• Diastereomers: compounds that are not each others mirror images

Example of diastereomers: cis- and trans-compounds:

C C

Cl

H

C C

H

ClHH

Cl

cis−1,2−dikloreten trans−1,2−dikloreten

Cl

Appendix, Figure 7

The figure above illustrates cis-1,2-dichloroethene (left) and trans-1,2-dichloroethene (right).
The names are latin and means ”on this side” (cis) and ”on the other side” (trans), respectively.
An alternative nomenclature for cis and trans is Z and E, respectively, from German: zusammen
and entgegen.

Of greatest interest for a physicist are the so-called enantiomers. The reason is that such
compounds are optically active: If one of the enantiomers rotate the plane of polarization
of plane polarized electromagnetic waves in a certain direction (e.g. to the right), the other
enantiomer (the mirror image of the first one) will rotate the plane of polarization in the
opposite direction (e.g. to the left). A gas with 50 % of each of the two enantiomers will not
rotate the plane of polarization. Deviations from equal concentrations may be measured by
sending plane polarized light through the gas.

We will not go into the microscopical explanation of this optical effect. However, we will take
a look at the general structure of such compounds. Common for them is the presence of an sp3

hybridized carbon atom with four different substituents R1, R2, R3, and R4:
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R4 R1

R3

R2

C C

R

R

1 4R

R3

2
i planet

bak planet

foran planet

Notice the notation given to the right in the figure, to illustrate whether a given substituent lies
in, in front of, or behind the paper plane. With four different substituents, it is not possible to
superimpose these two compounds. (Something which is possible if only 3, 2, or 1 substituents
are different.) We call the central C atom in such compounds a chiral center.

To tell the enantimers apart, we need some kind of notation: First, rank the 4 substituents
according to standard rules (higher atom number gives higher priority and so on), such that R1

has the lowest priority etc. Next, imagine looking down the C-R1 axis. Go from R4 to R3 to
R2. If you go clockwise, you have an R isomer (R for rectus - right). If you go counterclockwise,
you have an S isomer (S for sinister - left).
According to this convention, we have, in the figure above, an R enantiomer to the left and an
S to the right.

An example:

NH 2 H 2N

C

i planet

bak planet

foran planet
C

H

HO OH

HCl Cl

Appendix, Figure 8

Both molecules have the formula HCNH2OHCl and the name amino-chloro-methanol. However,
the two molecules are not identical - they are each others mirror images. Ranking the 4
substituents by decreasing atom number yields Cl > OH > NH2 > H. If we look down the C-H
bond of the molecule to the left, we see that we much go clockwise from Cl to OH to NH2.
Hence, this is the R isomer. Doing the same with the molecule to the right, we find that we
must go counterclockwise. So, this is the S isomer.
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Molecular models produced in Spartan 
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Figure 1: 2-methyl-butane, C5H12

 
Figure 2: 3,4-dimethyl-2-pentene, C7H14
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Figure 3: 2-amino-3-pentenoic acid, C4H6NH2COOH 

 
 
 
 
 
 
 
 

 
Figure 4: 4-amino-3-methyl-2-butanol, NH2C5H10OH 
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Figure 5: 4-hexene-2,2-diamine, (NH2)2C6H10

 
 
 
 
 
 
 
 
 

 
Figure 6: Ethyl-4-cyano-3-hydroxy-2-butenoate, NC3HOHCOOC2H5
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Figure 7: cis- and trans-1,2-dichloroethene, C2H2Cl2

 

 
Figure 8: R- and S-amino-chloro-methanol, HCNH2OHCl (R to the left) 
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Figure 9: Color code 
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