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1. Quantum mechanical calculations on molecules
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In principle, we have a simple and well defined problem. We have a number of nuclei (A, B, ...)
and a number of electrons (i, j, ...) in positions RA, RB, ..., ri, rj , ... The possible states Ψ
of the complete manybody system, and the corresponding energy eigenvalues E are determined
by the Schrödinger equation

HΨ = EΨ

Here,
H = K + V,

with quantum mechanical operator for kinetic energy,

K =
∑

i

− h̄2

2m
∇2

i +
∑

A

− h̄2

2MA

∇2
A

and potential energy,
V =

∑

i<j

Vij +
∑

A<B

VAB +
∑

i,A

ViA + Vext

where the various interaction terms are

Vij =
e2

4πε0rij

VAB =
ZAZBe

2

4πε0RAB

ViA =
−ZAe

2

4πε0riA

whereas Vext represents an external potential, e.g. due to an external electromagnetic field, if
such a thing is present. In these expressions, m = the electron mass, MA = the mass of nucleus
nr A, and ZA = the atomic number of atom nr A.
To solve the Schrödinger equation for the manybody system means to find eigenfunctions Ψn

and corresponding energy eigenvalues En. The ground state, then, is the Ψ that results in the
lowest energy E:

EGS = minE = min
∫

Ψ∗HΨ dτ

Here,
∫

. . . dτ means integral over all the spatial coordinates of the particles, and summation
over variables that represent the spin of the particles. And we vary Ψ until the lowest possible
energy E has been found.
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Concerning the electron spin: Electrons are fermions with spin 1/2, and with two possible
orientations, ”up” or ”down” (or: ”+” or ”-”). In this course, we will always study atoms, ions,
and molecules that are so-called ”closed shell” systems, i.e., the systems consists of an even
numer of electrons that pairwise are described by the same orbital state, one with spin up and
one with spin down. Hence, the total spin of the system is zero. And since our Hamiltonian
does not contain any terms that depend upon the electron spin, we may simply disregard the
spin in most of what follows. The only thing we must remember is that each single particle
orbital state may be combined with two spin states (up and down), so that we may put two
electrons into each single particle orbital. (This is the Pauli principle, more about that later.)
As is well known, finding a minimum of an ordinary function f(x) implies to locate a so-called
stationary point where the derivative of f is zero. In a similar manner, finding the ground state
of a quantum mechanical manybody system implies locating a state Ψ which makes the value
of the total energy E stationary. In other words, in the ground state of the system,

δ

δΨ

(
∫

Ψ∗HΨ dτ
)

= 0.

This is an example of a variational principle. Another well known example is Fermat’s principle
from geometrical optics: the light travels along the path that minimizes the time of travel. The
differentiation δ/δΨ is not an ordinary derivative, but a so-called functional derivative, because
the energy E is not an ordinary function of Ψ, but a functional of Ψ.
The wave functions Ψ are manybody states that depend both on the electron coordinates ri

and the nuclear coordinates RA:

Ψ = Ψ(r1, r2, . . . ,R1,R2, . . .)

In general, exact solutions are not possible. Various types of approximations are necessary.

The Born-Oppenheimer approximation (Hemmer 7.4)
The nuclei are much heavier than the electrons: MA ≫ m. Hence, the nuclei will typically move
much more slowly than the electrons: vA ≪ ve. Then, it will be a reasonable approximation
to assume that the nuclei are at rest when solving for the movement of the electrons. The
Born-Oppenheimer approximation corresponds to solving the Schrödinger equation with fixed
values for the nuclear coordinates RA. Then, we have

K =
∑

i

− h̄2

2m
∇2

i

and

V =





∑

i<j

Vij +
∑

i,A

ViA



+

[

∑

A<B

VAB + Vext

]

.

Here, the terms in the first bracket depend upon the electron coordinates, whereas the terms
in the second bracket do not.
After having solved the ”electron problem”, the nuclear movement may be investigated. The
energy E, i.e., the ground state solution of HΨ = EΨ, now represents the potential that acts
upon the nuclei. For example, the atoms in a molecule which is in (or near) an equilibrium
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configuration, will ”feel” a potential approximately equal to that of a harmonic oscillator.
Then, the atoms will oscillate back and forth, around their equilibrium positions, with certain
vibrational frequencies. More about this later.

The very simplest treatment of the electron–electron interaction: Vij = 0
The major difficulty in various manybody problems is the interaction between the particles, in
our case Vij, i.e., the repulsion between the electrons. The simplest way to attack this problem
is setting Vij = 0. Such a drastic step will not give much of interest when it comes to the
description of real systems like molecules, but it may serve as an illustration of how the form

of the manybody states Ψ must be, without electron–electron interaction, but also with this
interaction, in some situations.
With Vij = 0, the hamiltonian becomes

H =
∑

i

hi +
∑

A<B

VAB.

Here,

hi = − h̄2

2m
∇2

i +
∑

A

ViA

is a single particle operator that only concerns electron nr i, and therefore only ”operates upon”
the coordinate ri. Now the Schrödinger equation becomes separable, and the manybody state
Ψ may be written as a product of single particle states ψ:

Ψ(r1, r2, · · · , rN) = ψ1(r1)ψ2(r2) · · ·ψN (rN).

We see that this is a solution simply by inserting it into

∑

i

hiΨ =

(

E −
∑

A<B

VAB

)

Ψ = ẼΨ,

which is a slight rewriting of HΨ = EΨ. Insertion of the product form of Ψ results in N single
particle equations,

hiψi = εiψi ; i = 1, 2, · · · , N
where ψi is an eigenfunction of hi, with eigenvalue εi.
The ground state is then

ΨGS = ψ1(r1)ψ2(r2) · · ·ψN (rN ),

with energy

EGS = Ẽ +
∑

A<B

VAB =
N
∑

i=1

εi +
∑

A<B

VAB

Next questions: How to take the electron–electron interaction Vij into account?

The Hartree and the Hartree-Fock approximations (Hemmer 9.3)
These approximations are based on the following idea: Treat the manybody system as a system
of independent electrons moving in an effective potential V (r), where V (r) describes both the
attraction due to the nuclei and the repulsion due to all the other electrons.
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The Hartree method

(D. R. Hartree, 1897-1958, UK)

Assume that the electrons are in single particle states (or: orbitals) ψ(r). Then, |ψi(ri)|2 is
the probability of finding electron nr i in the position ri, and −e|ψi(ri)|2 represents the charge
density in position ri due to electron nr i.
Hence, the potential felt by electron nr j is

V (rj) = −
∑

A

ZAe
2

4πε0rjA
+
∑

i6=j

∫

e2|ψi(ri)|2
4πε0rij

d3ri

and the Schrödinger equation (SE) for electron nr j becomes

[

− h̄2

2m
∇2

j + V (rj)

]

ψj(rj) = Ejψj(rj)

Here, the expression inside the brackets on the left side is the Hamiltonian Hj for electron nr
j. Since Hj depends on the wave functions ψi (i 6= j) of all the other electrons, the problem
must be solved iteratively:

• guess an initial potential V (0)(r)

• solve the SE and determine wave functions {ψi}(0)

• calculate a new potential V (1)(r) by letting the electrons occupy the wave functions {ψi}(0)

with the lowest energy

• solve the SE and determine wave functions {ψi}(1)

• calculate a new potential V (2)(r) . . .

and so on, until so-called self-consistency, which is achieved when

{ψi}(n) ≃ {ψi}(n−1)

with the desired accuracy. A method like this is usually called SCF (”Self Consistent Field”).
Note that the Hartree equations are on the same mathematical form as the ones we had without
any interactions whatsoever. Hence, the Hartree method also results in the simple product form
for the manybody states Ψ.

The Hartree-Fock method

(V. A. Fock, 1898-1974, USSR)
In the Hartree method, it is easy to obey the Pauli principle (Hemmer 8.5), i.e., no more than
one electron in each single particle state, simply by constructing the potential in such a way
that the lowest energy wave functions are filled with one electron in each. (Two electrons in
each, one with spin up and one with spin down, if we are only dealing with the orbital part of
the wave function.)
In the Hartree-Fock method, one also makes sure the manybody state Ψ is antisymmetric with
respect to an interchange of the coordinates of any two electrons. Since the value of the spin
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is half-integer, more precisely 1/2, electrons are particles called fermions, and a state that
describes two or more fermions, must change sign if two of them interchange coordinates.
We remember from mathematics that a determinant changes sign if we interchange two rows
(or columns). We also remember, perhaps, that a determinant is zero if two rows (or columns)
are linearly dependent. For example, the determinant is zero if two rows are identical.
John C. Slater realized that these properties of determinants could be useful when dealing with
manybody states, and he suggested to write them as a determinant, where element (i, j) equals
ψi(rj , sj), i.e., single particle state nr i for electron nr j – with spatial coordinate rj and spin
coordinate sj. We simplify the notation by writing

ψi(rj , sj) = ψi(j).

Then, the Slater determinant that describes the N–electron state Ψ(1, 2, · · · , N) is:

Ψ(1, 2, · · · , N) =
1√
N !

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

ψ1(1) ψ1(2) · · · ψ1(N)
ψ2(1) ψ2(2) · · · ψ2(N)

...
...

. . .
...

ψN(1) ψN(2) · · · ψN (N)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

Let us be convinced that such a determinant fulfills the various requirements for a many electron
state:

• Ψ is antisymmetric (we use N = 2 as an example):

Ψ(1, 2) =
1√
2

[ψ1(1)ψ2(2) − ψ1(2)ψ2(1)]

Ψ(2, 1) =
1√
2

[ψ1(2)ψ2(1) − ψ1(1)ψ2(2)] = −Ψ(1, 2)

• The Pauli principle is automatically built in: If two single particle states ψi and ψj are
identical, this means that row nr i and row nr j are equal, and then the determinant is
zero, i.e., Ψ = 0. In other words: Two electrons cannot occupy the same single particle
state. Note: Here, we have included the electron spin variable in the discussion, and hence
there may be no more than one electron in each single particle state ψ. However, nothing
prevents ψi and ψj fraom having identical orbital parts, provided they have different spin

parts, one with spin up and one with spin down. If this is the case, ψi and ψj correspond
to one and the same molecular orbital (MO), of which we will talk more below.

• Ψ is correctly normalized if it is built up of orthogonal and normalized (”orthonormal”)
single particle states ψi. We will not show this in detail here, but I guess it looks reasonable
with the factor 1/

√
N ! since Ψ contains all together N ! terms.

A few additional comments:

• Why isn’t the Hartree–Fock solution the exact solution of such a manyfermion prob-
lem? Because a single Slater determinant is not the most general manybody function
Ψ(1, 2, · · · , N). You could e.g. construct a linear combination of many Slater determi-
nants. If such a state gives you a lower total energy for the system, it is by definition a
better approximation to the exact ground state.
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• There are alternative methods for attacking manybody problems. One common method
is so-called density functional theory (DFT). In DFT, one starts by expressing the total
energy of the system as a functional of the particle density n, i.e.,

E = E[n]

For many real problems in physics and chemistry, DFT provides a better description of
experimental data than does the Hartree–Fock method. At the same time, DFT is a
numerically faster method than Hartree–Fock.

• In the Spartan exercises in this course, we use the Hartree–Fock method.

LCAO: Linear Combination of Atomic Orbitals

Now, assume we want to solve the SE for a molecule. The following idea then seems reasonable:
Assume that the single particle states ψi in the molecule have certain similarities with (the well
known) wave functions of the hydrogen atom.
After all,

a molecule = atom + atom + atom + . . .

so why should we not be able to write

a molecular state = atomic state + atomic state + atomic state + . . .?

In other words, we try to write the molecular states, or rather molecular orbitals (MO), as
linear combinations of atomic states known from the H atom, or at least functions very similar
to them:

ψi =
M
∑

µ=1

cµiφµ , i = 1, 2, . . .

Here,

• ψi = molecular orbital nr i

• φµ = atomic state, or basis function nr µ

• cµi = molecular orbital coefficients, revealing to what extent the basis function φµ con-
tributes to MO ψi

For each type of atom (i.e., H, He, Li, . . .), one chooses (or constructs, or calculates) a basis

set {φµ}, i.e., (orthogonal) basis functions φ1, φ2, . . . , φM .
Here, we may, as a rule of thumb, assume that a larger M (i.e. more basis functions in the basis
set) will give us more accurate calculations. However, more basis functions means a heavier
numerical job, of course.
Suppose the molecule has 2N electrons. The ground state is then given by the MO coefficients
{cµi} (µ = 1, 2, . . . ,M ; i = 1, 2, . . . , N) that yields N molecular orbitals ψ1, ψ2, . . . , ψN such
that the energy becomes as small as possible.
Why N MOs for 2N electrons? Because the Pauli principle limits the number of electrons to
1 pr electron state. Each state consists of an orbital part (here: the MO) and a spin part.
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A given electron may have spin up or spin down, i.e., two possibilities. Hence, we may put 2
electrons in a particular MO, one with spin up and one with spin down. Hence, 2N electrons
will occupy N MOs.
In programs like Spartan, it is common practice to use so-called gaussian functions as basis
functions:

φ(r) = φ(x, y, z) = Cxaybzce−αr2

Here, C is a normalization constant. From the H atom, we know the various wave functions,
classified according to the value of the quantum number l for the angular momentum: s, p, and
d orbitals correspond to l = 0, 1, 2 etc. The integral exponents a, b, c correspondingly yields

• s orbitals: a = b = c = 0

• p orbitals: a = 1 or b = 1 or c = 1 (px, py, pz, respectively), the two others zero

• d orbitals: a+ b+ c = 2

etc. For a given value of l, we have 2l + 1 possible states, one state for each value of the
quantum number m = −l, . . . , l (Hemmer 5.4). That yields 1 s state and 3 p states. For the
d states, l = 2, i.e., degeneracy equal to 5. With the gaussians degenerasjonsgrad lik 5. Med
gaussfunksjonene

φ(x, y, z) = Cxaybzce−αr2

,

one seems to have 6 possibilities (a = 2, b = 2, c = 2, a = b = 1, a = c = 1, b = c = 1). The 5
”correct” d orbitals, i.e., those known from the hydrogen atom, are obtained by using

φxy = xye−αr2

φxz = xze−αr2

φyz = yze−αr2

together with two linear combinations of the remaining three:

φx2−y2 =

√

3

4
(φxx − φyy)

φ3z2−r2 =
1

2
(2φzz − φxx − φyy)

(Here, we didn’t care too much about normalization...) The final one,

φr2 =
√

5 (φxx + φyy + φzz) ,

is spherically symmetric, i.e., its symmetry is that of an s orbital, so this is simply not a
d orbital. In conclusion: The Spartan program uses all the 6 d-type basis functions, when
constructing the 5 correct d orbitals. The sixth, φr2 , with s symmetry is not used.

If you examine the wave functions of the H atom, you will notice that they have exponentials
of the form (Hemmer 5.7)

e−αr
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and not
e−αr2

The main reason for using the latter type, is that integrals like

∫

φ∗
µφµ d

3r

become simpler to solve. A disadvantage is that the chosen (gaussian) functions approach
zero much too fast when r becomes large. Moreover, they have the wrong shape when r → 0.
Therefore, one must use more gaussian functions than functions of the type exp(−αr) (so-called
Slater orbitals) to achieve the same accuracy in the calculations.

In the exercises in Spartan, the so-called 3-21G basis set will be used. Then we include the
following basis functions for the different atoms:

• H: 2 s orbitals: 1s, 2s

• C: 3 s and 2×3 p orbitals: 1s, 2s, 2px, 2py, 2pz, 3s, 3px, 3py, 3pz

• Cl: 4 s, 3×3 p and 6 d orbitals: 1s, 2s, 2px, 2py, 2pz, 3s, 3px, 3py, 3pz, 3dxx, 3dyy, 3dzz,
3dxy, 3dxz, 3dyz, 4s, 4px, 4py, 4pz

For N and O, one uses the same number of functions as for C, i.e., 3 s and 2×3 p orbitals, a
total of 9.

Example: In the molecule C4H7Cl, the MOs are written as linear combinations of 4·9+7·2+19 =
69 basis functions. The number of electrons in this molecule is 4 · 6 + 7 · 1 + 17 = 48. This
means that the MOs Ψ1,Ψ2, . . . ,Ψ24 are occupied by electrons (remember: 2 electrons in each
MO), whereas MOs Ψ25, . . . ,Ψ69 are unoccupied (empty).

As mentioned earlier, the MOs {Ψi} (or, the MO coefficients {cµi}) are calculated iteratively,
for example with the Hartree-Fock method.

Geometry optimization, energy minimization

Assume now that we have performed a Hartree-Fock calculation and found MOs {Ψi} with
corresponding energy eigenvalues {Ei} for a number of atoms A in fixed positions {Rj} (j =
1, 2, . . . , A).
The next natural question may be: In which positions {Rj0} will we find the atoms of the
molecule in equilibrium? The equilibrium positions, and hence the geometry of the molecule,
is determined by the requirement that the energy E of the system be as low as possible. The
energy E depends parametrically on the atom positions {Rj}.

Example: Two-atomic molecule. The molecular geometry is then determined by a single co-
ordinate, namely R = the distance between the two atoms. The energy, as a function of the
distance R, typically look something like this:
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R0

E

R

In other words, a strong repulsion if the interatomic distance becomes very small, and a weak
attraction when the distance becomes large. Minimum energy corresponds to R = R0 = the
equilibrium distance between the two atoms, i.e., the bond length. From the figure, we see that
the equilibrium geometry is characterized by

E ′(R0) =

(

dE

dR

)

R=R0

= 0

E ′′(R0) =

(

d2E

dR2

)

R=R0

> 0

The bond length R0 may be found by iteration. Assume that E(R) may be approximated with
a 2. order Taylor polynomial in the vicinity of R = R0:

E(R) ≃ E(R0) + (R−R0)E
′(R0) +

1

2
(R−R0)

2E ′′(R0)

Differentiation once and twice yields, respectively,

E ′(R) ≃ E ′(R0) + (R− R0)E
′′(R0) = (R −R0)E

′′(R0)

and
E ′′(R) ≃ E ′′(R0)

Solving with respect to R0 yields

R0 ≃ R− E ′(R)

E ′′(R0
≃ R− E ′(R)

E ′′(R)

Hence, the following iteration scheme should work, assuming that we start with an R not too
far away from R0:

• guess an initial R(1)

• calculate the corresponding energy E(R(1)) and its derivative, E ′(R(1)), and second deriva-
tive, E ′′(R(1))
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• calculate a new length

R(2) = R(1) − E ′(R(1))

E ′′(R(1))

• calculate the corresponding energy E(R(2)) and its derivative, E ′(R(2)), and second deriva-
tive, E ′′(R(2))

• calculate a new length

R(3) = R(2) − E ′(R(2))

E ′′(R(2))

etc etc, until convergence is achieved. The old and new length in iteration step nr n is

R(n+1) = R(n) − E ′(R(n))

E ′′(R(n))
,

and a convergence criterion must be specified, e.g.,

|R(n+1) − R(n)| < δ,

where δ is a suitably chosen (small) length, e.g., 0.001 Å.

In a molecule with A atoms, the geometry will be determined by 3A coordinates, e.g., xj , yj

and zj for atom nr j (j = 1, 2, . . . , A). A generalization of the method described above then
becomes:
The molecular geometry is given by the vector

R = (x1, y1, z1, x2, y2, z2, . . . , xA, yA, zA)

The relation between the old and the new geometry in iteration step nr n becomes

R
(n+1) = R

(n) − (∇E)(n) ·
(

H
(n)
)−1

with

∇E =

(

∂E

∂x1

,
∂E

∂y1

,
∂E

∂z1
, . . . ,

∂E

∂xA

,
∂E

∂yA

,
∂E

∂zA

)

and the Hessian matrix

H =











∂2E
∂x2

1

∂2E
∂x1∂y1

· · · ∂2E
∂x1∂zA

...
...

∂2E
∂zA∂x1

· · · · · · ∂2E
∂z2

A











i.e., the matrix with matrix elements equal to the second derivative of the energy with respect
to all possible combinations of two coordinates.
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Vibrational frequencies

As mentioned earlier, the atoms in a molecule will oscillate back and forth around their equilib-
rium position. Again, it is illustrative to examine the simplest possible example, a two-atomic
molecule:

R0

E

R

We see that the two atoms of the molecule move in a potential E(R) which, in the vicinity of
equilibrium, to a good approximation may be regarded as harmonic (i.e., quadratic) (dashed
curve in the figure):

E(R) ≃ 1

2
mω2(R−R0)

2

(m = the mass of the oscillator = the reduced mass = m1m2/(m1 + m2) for a two-atomic
molecule if we have atoms with mass m1 and m2) Then we know that the system will perform
oscillations around the equilibrium distance R0, with frequency f = ω/2π. The vibrational
frequency is determined by (the square root of) the curvature of the potential:

f =
ω

2π
=

1

2π

√

E ′′(R0)

m

We generalize (without many details!) to an A-atomic molecule: The Hessian matrix H then
contains all the information of the possible vibrational movements (so-called normal modes)
and the corresponding vibrational frquencies in the molecule. More precisely: Diagonalization

of the mass–weighted Hessian matrix, F = M
−1/2

HM
−1/2, i.e., solution of the eigenvalue

problem
FA = λA,

provides eigenvalues λα = ω2
α (α = 1, 2, . . . , 3A). Here, M is a diagonal (3A× 3A) matrix with

elements M11 = M22 = M33 = m1, with m1 equal to the mass of atom nr 1, M44 = M55 =
M66 = m2, with m2 equal to the mass of atom nr 2, and so on. The corresponding eigenvectors
Aα have elements Aαi (i = 1, 2, . . . , 3A) that denote the amplitude of the displacement of the
various atoms (in the x−, y−, and z− directions) in the different normal modes α.
For a non-linear molecule (i.e., the atoms do not all lie on a straight line), 6 of the eigenvalues
ω2

α will be zero. These correspond to pure translation (3 of them) and pure rotation (3 of them)
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of the whole molecule. In other words, there are 3A− 6 vibrational modes for a molecule with
A atoms.
For a linear molecule (e.g., CO2 and C2H2), only 5 of the eigenvalues ω2

α will be zero: There are
still 3 degrees of freedom associated with pure translation of the molecule, but only 2 degrees
of freedom associated with rotation. (The ground state of a linear molecule is cylindrically
symmetric with respect to the linear axis of the molecule. Then, within quantum mechanics,
it does not make sense to speak about rotation around this axis, just as it does not make sense
to speak about rotation of a spherically symmetric atom.)

Example: The water molecule, H2O, has 3 atoms. It is not linear, the angle H-O-H is ca 105
degrees. The number of degrees of freedom is 9. The number of vibrational modes is 9 - 6 =
3. The figure below denotes the wave number k (i.e., the wave number of an electromagnetic
wave with frequency f = c/λ = ck/2π) and, with arrows, the corresponding movement of the
three atoms in the molecule for each normal mode:

H H

O

H H

O

H H

O

1595 cm −1 3652 cm −1 3756 cm −1

Notice that the vibrational movement is such that the center of mass of the molecule is always
at rest.

A little warning before we move on: The term degrees of freedom is not used in a unique manner
in all of physics and chemistry. We have used it to be synonymous with the number of spatial
dimensions available for each ”building block” (i.e. each atom) in the system at hand. Hence,
a molecule with A atoms moving in 3 spatial dimensions simply have 3A degrees of freedom.
In Thermal physics, in connection with heat capacity of e.g. ideal gases, a slightly different
definition is used. Here, ”the number of degrees of freedom” means the number of quadratic
terms in the energy function of the system, where both kinetic and potential energy terms are
counted (of course). Then, a two-atomic molecule has seven, and not six, degrees of freedom:
Three for translation of the molecule (kinetic energy mv2

x/2+mv2
y/2+mv2

z/2), two for rotation
around the two axes perpendicular to the linear axis of the molecule, and two for the vibration
along the molecular axis, one for kinetic energy and one for potential energy. In the general
formulation of Mechanics, each particle in the system has two degrees of freedom for each
spatial dimension, one for the position and one for the momentum of the particle. Hence, all
together twelve degrees of freedom for a two-atomic molecule.

Chemical reactions and equilibria

In connection with chemical reactions, we will typically be interested in two things:

• The kinetics: How fast is a chemical reaction?

• The thermodynamics: To what extent does the reaction proceed, from reactant(s) to
product(s)? (I.e., provided we wait long enough...)
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Let us examine a chemical reaction
A ⇀↽ B

Here, A may represent one or more reactants, and B may correspondingly represent one or
more products. The energy E of the system will typically be as in the figure below, along some
kind of reaction coordinate R:

RA RTS RB

Ea

E∆

E

R

E(TS)

E(A)

E(B)

A

TS

B

Here, R may e.g. be the distance between two atoms, such that a bond is broken when R is
increased from RA to RB. The reaction proceeds via a (local) energy maximum, the so-called
transition state, denoted as TS.
The speed of the reaction (the kinetics) is determined by the activation energy (the energy
barrier)

Ea = E(TS) − E(A)

in that the reaction rate k will depend exponentially upon the ratio between Ea and the available
thermal energy kBT :

k ∼ e−Ea/kBT

Provided we wait long enough, a thermodynamic equilibrium will be established between reac-
tant(s) A and product(s) B. The equilibrium is determined by the energy difference

∆E = E(A) − E(B)

in that the ratio between concentrations [A] and [B] will depend exponentially upon the ratio
between ∆E and kBT :

[A]

[B]
= e−∆E/kBT

Comment: Above, we are rather sloppy when we refer to the ”energy”. For instance, we say
nothing about what kind of experimental conditions we have, whether the pressure or the
volume is kept constant and so on. Such details will determine which energy function is the
relevant one: the enthalpy, the Helmholtz free energy, or the Gibbs free energy, cf courses like
TMT4110 Chemistry, Thermal physics, and Statistical physics. Let us here avoid all such details
and simply assume that E(R) reflects the relevant energetic conditions, both with respect to
the kinetics and with respect to the thermodynamics.

Quantum mechanical modeling of chemical reactions

Several strategies are possible if we wish to model a chemical reaction with quantum mechanical
methods. Here, only one method is described. It is based on identifying a sensible reaction
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coordinate R, and then change this stepwise, starting from the reactant geometry A. Let us
illustrate the method with a concrete example (see exercise 2).

Chemical reaction that we want to model:

ClCH3 + Br− → BrCH3 + Cl−

Here, the anion Br− will ”attack” the C atom from ”behind”, such that the bond between C
and Cl is broken while a new bond between Br and C is formed.
The reactant A will be a ”complex”, with Br− ”coordinated” to the CH3Cl molecule, with a
certain equilibrium distance RA between Br− and C. The product B will be a similar complex,
but this time with Cl− coordinated to the CH3Br molecule, and with a (shorter) distance RB

between Br and C.
We choose the Br-C distance as reaction coordinate and change it stepwise, from the initial
value RA to the final value RB. Let the step size be ∆R.
First, an unconstrained geometry optimization of the coordinated complex A is performed.
This gives us the equilibrium distance RA and the corresponding energy EA.
Next, the Br-C distance is changed to R1 = RA − ∆R and kept fixed, while the rest of the
geometry of the system is optimized. This gives us the point (R1, E1) on the energy curve
E(R).
And in this way we continue. In step nr n, we have Rn = RA − n · ∆R, and when all other
degrees of freedom have been optimized, we obtain the point (Rn, En) on the energy curve. In
step nr N , with

N =
RA −RB

∆R
,

we have RN = RA −N · ∆R = RB, i.e., we have modeled through the reaction, all the way to
the product B, which is here the BrCH3 molecule, with Cl− coordinated to the C atom.
A plot of E as a function of Rj will look something like this (note: decreasing R to the right
in the figure):

RA RBR1

E

E(TS)

E(A)
A

TS

B

R∆
R2

R
E(B)

The activation energy is now calculated to be

Ea = E(TS) − E(A)

whereas
∆E = E(A) − E(B)
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We start and end in energy minima A and B, characterized by a positive curvature of the energy
curve E(R). In general, an energy minimum will be characterized by only positive eigenvalues

of the Hessian matrix H .

The reaction proceeds via a local energy maximum TS, characterized by a negative curvature of
the energy curve E(R). In general, such a transition state will be characterized by one negative

eigenvalue of the Hessian matrix H . (While the remaining eigenvalues are positive.)
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2. Nomenclature in organic chemistry (not relevant for exam)

Let us start with a couple of simple examples:

C C C C

C

1 2 3 4

Appendix, Figure 1

We identify the longest carbon chain and number the atoms in this chain such that the most
important substituent is placed on the lowest possible number. Then we have here a butane,
with a methyl substituent in position 2. Hence, the compound is 2-methyl-butane.

C C C C

4

C

C

C

31 2

5

Appendix, Figure 2

Here, the longest carbon chain has 5 C atoms. We put numbers such that the double bond
comes at the lowest possible number. This yields a pent-2-ene (or: 2-pentene), with methyl
substituents in positions 3 and 4. Hence, the name is 3,4-dimethyl-pent-2-ene (or: 3,4-dimethyl-
2-pentene).

But how to figure out the fact that this compound,

NH 2

C C C C C

O

OH
5 4 2

1

3

Vedlegg, Figur 3

should have the name 2-amino-pent-3-enoic acid? We need some rules. The name of the
compound consists of 3 parts:

• One or several prefixes, including numbering

• The main skeleton

• The suffix

17



First, we identify the suffix. The rules say that we should choose the functional group in
the molecule with the highest priority, according to Table 1 (below). The main skeleton is
then determined by the longest carbon chain. The prefix of the name must finally contain
information about all the substituents (except the one promoted to suffix, of course), including
their position, and in alphabetical order. The numbering is done so that the suffix sits at the
lowest possible number on the carbon skeleton. One could ask if the carbon atom in, say, the
carboxylic acid group -COOH should be counted when naming the skeleton. The answer is yes,
also if the suffix is an ester, an amide, a nitrile, an aldehyde, a ketone etc.

Let us look at some more examples.

Example 1:

H 2N C C C

OH

C
12

34

C

Appendix, Figure 4

This could be an alcohol or an amine. According to Table 1, alcohol has higher priority
than amine, so it must be an alcohol. The skeleton is C-C-C-C, i.e., butane. We have two
substituents, one methyl (CH3) and one amino ((NH2) gorup. We number the skeleton so that
the suffix group sits at the lowest possible number. Here, this implies putting -OH on carbon
nr 2. Hence, the methyl group is in position 3, and the amino group in position 4. The name is

3-methyl-4-amino-butan-2-ol
(or 3-methyl-4-amino-2-butanol)

Example 2:

NH 2

NH 2

C C C C C C
23456 1

Appendix, Figure 5

The functional group with highest priority is -NH2, and since we have two of them, this becomes
a diamine. The skeleton has 6 C atoms, with a double bond between nr 4 and 5. The amino
groups should sit on the lowest possible numbers, here nr 2. That’s it, so the name is

hex-4-ene-2,2-diamine
(or 4-hexene-2,2-diamine)
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Example 3:

C C C C

O

4 2

1

3
ON

OH

C C

Appendix, Figure 6

Highest priority for the group -COOR, with R = C2H5, i.e. ethyl. So the compound is an ester,
and the name should end with -oate or -ate. (If we had R = H, we would have had a carboxylic
acid.) The carbon skeleton starts with the carbon atom of the ester group and consists of 4 C
atoms, with a double bond between nr 2 and 3. Hence, this is a but-2-enoate (or: 2-butenoate),
and with R = ethyl, this becomes an ethyl-but-3-enoate. Between ”ethyl” and ”but-2-enoate”,
we must say something about the substituents. Here, we have a hydroxy group in position 3
and a nitrile group in position 4. So, I believe the name must be

Ethyl-4-cyano-3-hydroxy-but-2-enoate
(or Ethyl-4-cyano-3-hydroxy-2-butenoate)

(The substituents (here, cyano and hydroxy) in alphabetical order.)
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Table: Some functional groups, ranked according to decreasing priority

Rank Main group Functional group Prefix Suffix

1 Carboxylic acid -COOH C

O

OH (carboxy-) -oic acid

2 Carboxylic acid anhydride -CO–O–CO- C

O

O C

O

-oic anhydride

3 Ester † -COOR C

O

O R -oate

4 Carboxylic acid halide † -COX C

O

X halocarbonyl- -oyl halide

5 Amide -CONH2
NH 2C

O

amido- -amide
6 Nitrile -CN C N cyano- -nitrile

7 Aldehyde -COH C

O

H oxo- -al

8 Ketone -CO- C

O

oxo- -one
9 Alcohol -OH hydroxy- -ol

10 Thiol -SH mercapto- -thiol
11 Amine -NH2 amino- -amine
12 Imine >C=N- imino- -imine
13 Alkene -C=C- -ene
14 Alkyne -C≡C- -yne
15 Alkane -C–C- -ane

Secondary groups (no priority) Functional group Prefix Suffix
Ether -C–O–C- alkoxy- -ether
Halide † -X halo- (e.g. chloro-)
Nitro -NO2 nitro-

† X = a halogen (F, Cl, Br, or I), R = (usually) an alkyl group (CnH2n+1)

Naming organic compounds:

[Prefix(es) including numbering] - [Main skeleton] - [Suffix]

• Suffix: functional group with highest rank

• Main skeleton: longest connected carbon chain, numbered so that the suffix group sits on
the lowest possible number

• Prefix(es) incl numbering: all substituents on the main skeleton, in alphabetical order
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3. Stereochemistry (most of this is not exam relevant, but lectured material about enan-
tiomers and optically active compounds is relevant for the exam)

Stereochemistry is about compounds with the same chemical formula, but compounds that are
not identical. We speak of different isomers.
We classify isomers as

• constitutional isomers: different order of the atoms/substituents

• stereo isomers: same order, but different spatial positions of the atoms/substituents

For example: 1-butene and 2-butene are different constitutional isomers of C4H8. Here, we will
take a closer look at stereo isomers.

Stereo isomers may be divided into two groups:

• Enantiomers: compounds that are each others mirror images

• Diastereomers: compounds that are not each others mirror images

Example of diastereomers: cis- and trans-compounds:

C C

Cl

H

C C

H

ClHH

Cl

cis−1,2−dikloreten trans−1,2−dikloreten

Cl

Appendix, Figure 7

The figure above illustrates cis-1,2-dichloroethene (left) and trans-1,2-dichloroethene (right).
The names are latin and means ”on this side” (cis) and ”on the other side” (trans), respectively.
An alternative nomenclature for cis and trans is Z and E, respectively, from German: zusammen
and entgegen.

The rest of the notes are relevant for the exam!

Of greatest interest for a physicist are the so-called enantiomers. The reason is that such
compounds are optically active: If one of the enantiomers rotate the plane of polarization
of plane polarized electromagnetic waves in a certain direction (e.g. to the right), the other
enantiomer (the mirror image of the first one) will rotate the plane of polarization in the
opposite direction (e.g. to the left). A gas with 50 % of each of the two enantiomers will not
rotate the plane of polarization. Deviations from equal concentrations may be measured by
sending plane polarized light through the gas.

We will not go much into the microscopical explanation of this optical effect, but a ”classical”
explanation, based on the refractive index of the medium, has been included below. At first,
however, we take a closer look at the general structure of such compounds. Common for them
is the presence of an sp3 hybridized carbon atom with four different substituents R1, R2, R3,
and R4:
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R4 R1

R3

R2

C C

R

R

1 4R

R3

2
i planet

bak planet

foran planet

Notice the notation given to the right in the figure, to illustrate whether a given substituent lies
in, in front of, or behind the paper plane. With four different substituents, it is not possible to
superimpose these two compounds. (Something which is possible if only 3, 2, or 1 substituents
are different.) We call the central C atom in such compounds a chiral center.

To tell the enantimers apart, we need some kind of notation: First, rank the 4 substituents
according to standard rules (higher atom number gives higher priority and so on), such that R1

has the lowest priority etc. Next, imagine looking down the C-R1 axis. Go from R4 to R3 to
R2. If you go clockwise, you have an R isomer (R for rectus - right). If you go counterclockwise,
you have an S isomer (S for sinister - left).
According to this convention, we have, in the figure above, an R enantiomer to the left and an
S to the right.

An example:

NH 2 H 2N

C

i planet

bak planet

foran planet
C

H

HO OH

HCl Cl

Appendix, Figure 8

Both molecules have the formula HCNH2OHCl and the name amino-chloro-methanol. However,
the two molecules are not identical - they are each others mirror images. Ranking the 4
substituents by decreasing atom number yields Cl > OH > NH2 > H. If we look down the C-H
bond of the molecule to the left, we see that we much go clockwise from Cl to OH to NH2.
Hence, this is the R isomer. Doing the same with the molecule to the right, we find that we
must go counterclockwise. So, this is the S isomer.

Explanation of why chiral molecules are optically active.

When electromagnetic waves propagate through a medium, this implies an oscillating electric
field E and magnetic field B that influence the charges in the molecules, and result in oscillating
electric and magnetic dipoles, which in turn represent their contributions to the total electric
and magnetic field. As is well known from wave physics (and let us here assume linear and
non-dispersive media, for simplicity), the net effect of this seemingly complicated interaction
between the incoming wave and the medium, is expressed by a change in the velocity of the
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electromagnetic wave, from the value c in vacuum, to the value v = c/n in the medium at hand.
Here, n is the refractive index of the medium.
Let us now make the following – rather plausible – assumption: For a medium that consists of
chiral molecules, i.e., molecules that are either ”right handed” or ”left handed”, the refractive
index is different for a right circularly and a left circularly polarized electromagnetic wave:

nR 6= nL

We will not attempt to prove this here, but simply note that it can be verified experimentally,
and that is can be shown theoretically by (not quite trivial) quantum mechanical calculations.
Furthermore, a right circularly polarized wave must be ”seen” by an R-isomer in the same way
as a left circularly polarized wave is seen by an S-isomer, and vice versa. In other words,

nR
R = nS

L

and
nS

R = nR
L

so that
∆n(R) ≡ nR

R − nR
L = −∆n(S) ≡ −(nS

R − nS
L)

Here, the notation is like this: nj
α denotes the refractive index for an α-circularly polarized e.m.

wave ((α = R,L) when the medium consists of the j-isomer (j =R,S).
Next, we assume that the incident wave is linearly polarized, e.g. with its polarization along x,
and with propagation along z:

E(z, t) = x̂ E0 cos(kz − ωt)

We may regard this wave as a superposition of a right circularly and a left circularly polarized
wave,

ER(z, t) = [x̂ E0 cos(kz − ωt) − ŷ E0 sin(kz − ωt)]/2

and
EL(z, t) = [x̂ E0 cos(kz − ωt) + ŷ E0 sin(kz − ωt)]/2

respectively. Then, we see that we may write

E(z, t) = ER(z, t) + EL(z, t)

Since the refractive index is different for the two circularly polarized components, they will not
have the same speed through the medium. Let us denote by l the path length through the
medium. The two circularly polarized components will not spend the same time traversing the
box with the medium, and the time difference is

∆t = tR − tL =
l

vR
− l

vL
= (nR − nL)

l

c

This corresponds to a phase difference ∆θ between the two circularly polarized components,
given by

∆θ = ω∆t = ck∆t = c
2π

λ
∆t =

2πl

λ
(nR − nL)
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Hence, the transmitted wave is stil a linearly polarized wave, where the polarization is no longer
along x, but rotated an angle ∆θ/2 with respect to the x axis.

R−isomer
E

E

l

E

l

S−isomer

E

k

k

k

k

x

zy

EL ER

y

x E

EL
ER

y

x

∆θ

∆θ/2

E

transmittert bølgeinnkommende bølge

Since R and L interchange roles when the R-isomer is replaced by the S-isomer, it is clear that
the only difference between a medium with R-isomers and a medium with S-isomers is precisely
the sign of the accumulated phase difference ∆θ. If we have a so called racemic mixture, i.e., 50%
of the R- and the S-isomer, there will be no net rotation of the polarization direction. Deviations
from a racemic mixture may be detected by observing a rotated polarization direction in the
transmitted wave.

Exercise: Show that if EL and ER have obtained a mutual phase difference ∆θ upon transmis-
sion through the medium, then the polarization of E = EL + ER has rotated an angle ∆θ/2.
Hint: Use trigonometric relations for ”sums of cosines and sines” from Rottmann.
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