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Sensuren faller i uke 25.

Problem 1 (Counts 27 %)

a. A particle of mass m is moving in a simple one-dimensional spherical well potential

V (x) =

{
0 for −πa/2 < x < πa/2,
V0 = h̄2/(2ma2) for |x| > πa/2.

The width (πa) of the well is chosen in such a way that this system has an energy eigenfunc-
tion (which we may call ψ2) with the energy E2 = V0. ♠Show, using the time-independent
Schrödinger equation, that ψ2 must have the form ψ2 = B (a constant) for x > πa/2.
♠Then find the form of ψ2 inside the well, for −πa/2 < x < πa/2. ♠Make a sketch of the
function ψ2, and explain in words how it behaves for x < −πa/2.
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b. The function ψ2 actually is the first excited state of this system. ♠Find out what are the
forms of the ground state ψ1 inside and outside the well, and make a sketch of ψ1. ♠Find an
equation which determines the energy of the ground state, and explain how this equation can
be solved (without actually carrying through the calculation).

c. We now modify the potential, by adding a barrier of height 2V0 = h̄2/(ma2) in the
middle of the well, in the region −b < x < b, where 0 < b < πa/2; see the figure:

When b is increased from zero, the ground-state energy E1 will increase. We shall now see
how one can find the b-value (b0) which makes E1 = V0. You are informed that the ground
state ψ1 is symmetric for all 0 ≤ b ≤ b0. ♠Assume that E1 = V0 , and start by finding what
the form of ψ1 is for |x| > πa/2. ♠Then show that ψ1 for b0 < x < πa/2 is proportional
to sin k1x (where k1 should be determined). Go on to find the form for −b0 < x < b0. [You
might find it helpful to make a sketch.] ♠Find at last an equation which determines b0. (You
are not asked to solve this equation.)

Problem 2 (Counts 16 %)

In this Problem, we consider a two-dimensional system, where a particle of mass m is moving
in the xy-plane, in a harmonic oscillator potential V (x, y) = 1

2
mω2(x2 + y2). At t = 0, this

oscillator is prepared in the product state Ψ(x, y, 0) = ψx(x)ψy(y), where both ψx and ψy are
normalized:

ψx(x) = C0 exp[−mω(x− b)2/2h̄]

(
C0 =

(
mω

πh̄

)1/4
)
,

ψy(y) = C0 exp[−mωy2/2h̄+ iy mωb/h̄], (b > 0).

a. ♠Explain which symmetry properties the probability density |Ψ(x, y, 0)|2 at t = 0 has,
and use these properties to find the expectation values 〈x 〉0 and 〈 y 〉0 at t = 0 (without
explicit calculations). ♠Show that 〈 px 〉0 = 0 and 〈 py 〉0 = mωb. [Hint: Note that (e.g.)

〈 f(x, px) 〉0 =
∫ ∞
−∞

ψ∗x (x) f(x, p̂x)ψx(x)dx,

multiplied by the normalization integral for ψy(y), which is equal to 1.]

b. ♠Use Ehrenfest’s theorem to show that the expectation values of x and px for t > 0 for
this oscillator can be written on the form

〈xt 〉 = Ax sinωt+Bx cosωt; 〈 px 〉t = mω(Ax cosωt−Bx sinωt).
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♠Use the above results to determine Ax and Bx, find corresponding results for the y-direction,
and show that the expectation value of the position follows a circular orbit.

Problem 3 (Counts 32 %)

In this Problem we consider first a hydrogenlike atom consisting of a cesium nucleus (Z = 55)
and an electron. A measurement is carried out of the energy E, the square L2 of the angular
momentum and a certain component n̂·L of this, on a large number of such hyrogenlike atoms.
A selection of these atoms will then be left in an ensemble described by the wave function

ψ = R(r)Y (θ, φ),

where

R = C
Zr

a0

(
1− Zr

6a0

)
exp(−Zr/3a0)

and

Y =

√
3

4π
n̂·r̂ = nx

√
3

4π

x

r
+ ny

√
3

4π

y

r
+ nz

√
3

4π

z

r
.

Here, C ia a normalization constant and n̂ is a unit vector.

a. The radial function given above implies that the reduced mass has been set equal to the
electron mass me. ♠Why is this a very good approximation for the present system? ♠What
do we mean by stating that E, L2 and n̂·L are compatible observables for the present system,
and what are the conditions satisfied by the corresponding operators? ♠What is the result
for L2 measured in the preparation of this ensemble, and what is the corresponding angular-
momentum quantum number l? (Explain your answer.) ♠Find the radial quantum number nr
and the energy E which was measured in the preparation of this ensemble, using the formula
sheet.

b. In analogy with the fact that L̂z = (h̄/i)∂/∂φ “asks for” the variation in the azimuthal
direction, that is, the variation following a rotation about the z-axis, we can set

n̂·L̂ =
h̄

i

∂

∂φ′
,

where the angle φ′ describes rotation about the n̂-axis. ♠Based on this, argue that the result
measured for n̂·L was equal to zero. Suppose that Lz is measured for the ensemble which was
prepared in the state ψ = RY . ♠Find the possible measured results and the corresponding
probabilities. ♠Find also the expectation value 〈Lz 〉 for the state ψ = RY .

c. At last, let us make a small comparison between the hydrogenlike atom (Z = 55) and the
neutral cesium atom. The most loosely bound electron of the cesium atom is in the 6s orbital,

ψCs
600 = RCs

60Y00 ≡
uCs

60

r
Y00,

where the radial function has nr = n−l−1 = 5 zeros. For s-waves, the functions un0 = rRn0

satisfy the “one-dimensional” equation[
− h̄2

2me

d2

dr2
+ V (r)

]
un0 = E un0, (l = 0),
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where V (r) is the potential due to the nucleus in the hydrogenlike case, and due to the nucleus
plus the 54 other electrons in the Cs case. ♠Start by explaining what we mean by the relative
curvature of a radial function u(r) = rR(r), and find the relative curvature expressed in terms
of the kinetic energy E − V (r) for the s-waves un0. ♠How does u curve in classically and
forbidden regions?

In the figure,

V hl = − Ze2

4πε0r
= − Zh̄2

mea0r
(Z = 55)

is the unscreened Coulomb potential for the hydrogenlike atom (in units of keV). The curve
uhl

60 is the corresponding 6s state. ♠Estimate the outer turning radius rhl
outer for this state using

the diagram, and calculate the same quantity, as a check. ♠Why must the zeros of this radial
function lie between zero and rhl

outer? ♠Why are the distances between the zeros smallest for
small r?

d. The curve V Cs shows a simplified model of the potential which the 6s electron in Cs experi-
ences (in keV). Note that for large r, V Cs[≈ −e2/4πε0r] is much weaker than V hl[= −Ze2/4πε0r].
♠Explain why.

The difference between the binding energies of the two 6s states is even bigger: For the
hydrogenlike atom, −Ehl is more than 1 keV, while −ECs in reality is of the order of 5 eV. In
order to understand how this can be, it is important to note that the difference between the
kinetic energies in the two cases satisfies the following inequality (using that−ECs ∼ 5 eV > 0):

Ehl − V hl − (ECs − V Cs) > Ehl − V hl + V Cs.

The right-hand side of this inequality is shown in the figure above (in the simplified model we
are using, and in units of keV). ♠Explain on the basis of this why the zeros of uCs

60 must lie
futher out than the corresponding zeros of uhl

60. ♠What must we then expect (qualitatively)
when comparing the outer turning radius rCs

outer with rhl
outer, and comparing ECs with Ehl?
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Problem 4 (Counts 25%)

Introduction (not really necessary for solving the problems):
The poisonous mustard gas ClCH2CH2SCH2CH2Cl is, by substitution of the S atom with
NR (where R = H, CH3, or a larger alkyl group), changed into amines, that happen to be
quite effective within chemotherapy and cancer treatment. This question is related to the
mechanism for how such amines react with guanine, which is one of the four types of bases in
DNA.

The reaction starts by the formation of a so called aziridinium cation (see figure below,
left, where R = CH3) when a chloride ion Cl− leaves the amine molecule. A three-atomic ring
(N-C-C) is created, and the reaction with guanine in DNA proceeds through the formation
of a chemical bond between one of the C atoms in the three-membered ring and one of the
N atoms of guanine. We have been asked to examine this reaction more closely, and since we
do not have a laboratory at our disposal, but on the other hand a computer, we choose to
perform the necessary quantum mechanical calculations with the Hartree–Fock method. First,
we replace the two groups CH3 and CH2CH2Cl with two H atoms (see figure below, right), in
order to reduce the computational time.

CH2(NCH3CH2CH2Cl)CH+
2 CH2NH2CH+

2

Hence, the reaction becomes:

+ →

CH2NH2CH+
2 + C5N5H5O → CH2NH2CH2C5N5H5O+

(Size, color: C: large, gray; N: medium, black; O: medium, light gray; H: small, white; Cl: large,
white)

Here, the introduction to the question ends!

In the basis set 3–21G(*), one includes the atomic orbitals, or basis functions, 1s and 2s for
each H atom, and 1s, 2s, 2p, 3s, and 3p for each C, N, and O atom. ♠How many basis
functions are then included in the calculation for, respectively,

• CH2NH2CH+
2 , • C5N5H5O, • CH2NH2CH2C5N5H5O+ ?
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♠How many electrons are there in, respectively,

• CH2NH2CH+
2 , • C5N5H5O, • CH2NH2CH2C5N5H5O+ ?

For each of these three molecules, the total electron spin S is zero in the ground state.
♠Explain why S = 0 is possible here. ♠Could one for these molecules imagine a ground
state with total electron spin S = 1/2? What about S = 1? Explain your answers briefly.
♠In the ground state, with S = 0, how many molecular orbitals are occupied by electrons in,
respectively,

• CH2NH2CH+
2 , • C5N5H5O, • CH2NH2CH2C5N5H5O+ ?

(Remember the Pauli principle!)

♠How many vibrational degrees of freedom are there in, respectively,

• CH2NH2CH+
2 , • C5N5H5O, • CH2NH2CH2C5N5H5O+ ?

In a Hartree–Fock calculation, we may roughly assume that the computational time de-
pends on the number of basis functions raised to the power four. ♠If a computation on
CH2NH2CH+

2 lasts for one second, how long time will a computation then roughly last for
CH2NH2CH2C5N5H5O+?

Our computations on the above described chemical reaction, where we change the distance
between the N atom in guanine and the C atom in CH2NH2CH+

2 stepwise from 2.8 Å to 1.5
Å, result in the following energy curve:

♠From the figure, read off the activation energy Ea of this reaction, and next, calculate the
corresponding Boltzmann factor exp(−Ea/kBT ) at room temperature. ♠Based on this, may
we conclude that the modeled reaction is not going to happen at room temperature? Assume
ideal gas behavior, pV = NkBT , calculate the volume pr molecule (assuming a normal pressure
p), estimate thus a mean free path between two collisions for a given molecule, and hence an
average time τ between subsequent collisions. Remember that the temperature T is directly
related to the average kinetic energy of the molecules.



Vedlegg: Formulae and expressions (Some of this may turn out to be use-

ful.)

One-dimensional harmonic oscillator, V (x) = 1
2
kx2

(
− h̄2

2m

∂2

∂x2
+ 1

2
kx2

)
ψn(x) = h̄ω(n+ 1

2
)ψn(x); ω =

√
k

m
; (ψn, ψk) = δnk;

ψ0(x) = C0 e
−mωx2/2h̄, C0 =

(
mω

πh̄

)1/4

;

ψ1(x) = C0

√
2mω

h̄
x e−mωx

2/2h̄, ψ2(x) =
C0

2

(
2mω

h̄
x2 − 1

)
e−mωx

2/2h̄, · · · ;

ψn(−x) = (−1)nψn(x).

The Laplace operator and angular-momentum operators in polar coordinates

∇2 =
∂2

∂r2
+

2

r

∂

∂r
− L̂2

h̄2r2
;

L̂2 = −h̄2

(
∂2

∂θ2
+ cot θ

∂

∂θ
+

1

sin2 θ

∂2

∂φ2

)
, L̂z =

h̄

i

∂

∂φ
;

L̂x =
h̄

i

(
− sinφ

∂

∂θ
− cot θ cosφ

∂

∂φ

)
, L̂y =

h̄

i

(
cosφ

∂

∂θ
− cot θ sinφ

∂

∂φ

)
;

[L̂2, L̂z] = 0, [L̂x, L̂y] = ih̄L̂z, osv.

Hydrogenlike system

V = − Ze2

4πε0r
= − Zh̄2

mea0r
; En = −1

2
(αZ)2mc

2

n2
= − h̄2

2mea2
0

m

me

Z2

(l + 1 + nr)2
.

[m = m1m2/(m1 +m2) is the reduced mass; nr is the number of zeros in the radial function,
for 0 < r <∞.]

Angular functions

{
L̂2

L̂z

}
Ylm =

{
h̄2l(l + 1)
h̄m

}
Ylm , l = 0, 1, 2, ...;

∫ 2π

0
dφ
∫ 1

−1
d(cos θ)Y ∗l′m′Ylm = δl′lδm′m;

Y00 =

√
1

4π
, Y10 =

√
3

4π
cos θ =

√
3

4π

z

r
≡ Ypz , Y1±1 = ∓

√
3

8π
sin θ e±iφ;

Ypx =

√
3

4π

x

r
=

1√
2

(Y1,−1 − Y11), Ypy =

√
3

4π

y

r
=

i√
2

(Y11 + Y1,−1);

Y20 =

√
5

16π
(3 cos2 θ − 1), Y2,±1 = ∓

√
15

8π
sin θ cos θ e±iφ, Y2,±2 =

√
15

32π
sin2 θ e±2iφ.

P̂Ylm = (−1)lYlm.



Ehrenfest’s theorem

d

dt
〈 r 〉t =

〈p 〉t
m

and
d

dt
〈p 〉t = 〈−∇V 〉t .

Some constants

h̄ = 1.054 571 68(18) · 10−34 Js = 6.582 119 15(56) · 10−16eVs;

1 eV = 1.602 176 53(14) · 10−19 J ≈ 0.03676 hartree ≈ 23.07 kcal/mol;

a0 =
4πε0h̄

2

mee2
≈ 0.529177 · 10−10 m (Bohr radius);

α =
e2

4πε0h̄c
≈ 1

137.0360
(fine-structure constant);

1
2
α2mec

2 =
h̄2

2mea2
0

≈ 13.6057 eV (Rydberg energy);

kB = 1.381 · 10−23 J/K = 8.625 · 10−5 eV/K (Boltzmann’s constant);

u = 1.661 · 10−27 kg (atomic mass unit);

1 atm = 1.013 · 105 N/m2;

1 Å = 10−10 m.

Some formulae

tan y =
1

cot y
= tan(y + nπ), n = 0,±1, · · · ;

sinh y = 1
2
(ey − e−y); cosh y = 1

2
(ey + e−y); tanh y =

1

coth y
=

sinh y

cosh y
;

cosh2 y − sinh2 y = 1;
d

dy
sinh y = cosh y;

d

dy
cosh y = sinh y.


