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Lecture notes 14

14 Time-dependent perturbation the-
ory
(Sections 11.1–2 in Hemmer, 9.1–3 in B&J, 9.1 in Griffiths)

14.1 Introduction

To illustrate what time-dependent perturbation theory is all about, let us as an example
consider a hydrogen atom. If we neclect all interactions except the Coulomb interaction
between the electron and the proton, the Hamiltonian is

Ĥ0 = − h̄2

2m
∇2 − e2

4πε0r
,

with the well-known energy eigenfunctions and stationary states given respectively by

ψnlm(r) = Rnl(r)Ylm(θ, φ) and Ψ
(0)
nlm(r, t) = ψnlm(r)e−iEnt/h̄,

corresponding to bound states. The unbound states of the electron-proton system (for

E ≥ 0), corresponding to ψElm(r) and Ψ
(0)
Elm(r, t) = ψElm(r) exp(−iEt/h̄), are probably

less well known.

Now suppose that this atom is influenced by an electromagnetic wave. The electron
(and the proton) then experience oscillatory electromagnetic forces corresponding to a time-
dependent potential-energy term V̂ (t) which together with Ĥ0 add up to the Hamiltonian

Ĥ = Ĥ0 + V̂ (t).

For such a time-dependent Hamiltonian, stationary solutions do not exist and, what is even
worse, it is no longer possible to find exact solutions of the Schrödinger equation. However,
approximate solutions can be found, and this is where time-dependent perturbation theory
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enters the picture. In this theory, V̂ (t) is considered as a “perturbation”, and the aim of the
theory is to find out how this term affects the behaviour of the system.

With the simplified notation 1

Ψ
(0)
k (r, t) = ψk(r)e−iEkt/h̄; ih̄

∂Ψ
(0)
k (r, t)

∂t
= Ĥ0Ψ

(0)
k (r, t) (T14.1)

for the “unperturbed” stationary solutions, we note that these solutions do not satisfy the
Schrödinger equation for the perturbed system,

ih̄
∂Ψ(r, t)

∂t
= [Ĥ0 + V̂ (t)]Ψ(r, t). (T14.2)

However, in spite of this, they turn out to be very useful: Firstly, we are free to assume that
the system is prepared in one of the unperturbed solutions at time t = 0,

Ψ(r, 0) = Ψ
(0)
i (r, 0) = ψi(r). (T14.3)

Here, i stands for initial, and the initial state could for example be the unperturbed ground
state, ψ100. Secondly, the unperturbed states constitute a complete set of states, and it turns
out to be useful to write the unknown solution of (T14.2) as an expansion in terms of the
unperturbed stationary states:

Ψ(r, t) =
∑
k

ak(t)Ψ
(0)
k (r, t) = ai(t)Ψ

(0)
i (r, t) +

∑
k 6=i

ak(t)Ψ
(0)
k (r, t). (T14.4)

Here it is important to note that the expansion coefficients ak are not time independent:
With the initial state Ψ(r, 0) = ψi(r), we start out with the coefficient ai(0) = 1, while

all the other coefficients are equal to zero. However, because the unperturbed state Ψ
(0)
i (r, t)

is not a solution of the Schrödinger equation ih̄∂Ψ(r, t)/∂t = ĤΨ(r, t) for the perturbed

system, the system can not stay in the state Ψ
(0)
i (r, t). This means that the coefficient ai(t)

(which is the probability amplitude of finding the system in the initial state Ψ
(0)
i (r, t)) will

decrease from 1, while some of the other coefficients (amplitudes) will start to deviate from
zero. We remember that |ak(t)|2 is the probability of measuring the energy Ek and leaving
the system in the corresponding state, or as we frequently put it, of “finding” the system in
the eigenstate ψ

(0)
k of Ĥ0. Thus, for k 6= i the squares |ak(t)|2 are transition probabilities;

there is a finite probability that the atom which was at t = 0 prepared in e.g. the ground
state, will at time t be “found” in excited states. (Note that

∑
k |ak(t)|2 = 1.) Finding these

transition probabilities is usually the the main task when quantum mechanics is applied to
physical processes where something happens.2

1The superscript (0) indicates that these are solutions for the unperturbed Hamiltonian Ĥ0. We drop this
superscript for the energy eigenvalues Ek and the energy eigenfunctions ψk(r).

2Strictly speaking, if we want to interpret the coefficient ak(t) as the probability amplitude of measuring

the unperturbed energy Ek and leaving the system in the corresponding state Ψ
(0)
k (r, t), we should turn off

the perturbation just before the measurement at time t. Then, according to the measurement postulate,

the energy Ek and the state Ψ
(0)
k (r, t) would really be a possible outcome of the measurement. Similarly,

the preparation of the initial unperturbed state ψi could be done immediately before turning on the per-
turbation at t = 0. In such a setting, we can really talk about transitions between stationary states.
Note also that transitions between states with different energies are possible because the time-dependent
perturbation corresponds to a non-conservative system; the energy of a hydrogen atom is not constant when
it is experiencing an external force.
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14.2 Formulation of time-dependent perturbation the-

ory

We wish to solve the Schrödinger equation (T14.2), or more generally the equation of motion

ih̄
d

dt
|Ψ(t)〉 = (Ĥ0 + V̂ (t) ) |Ψ(t)〉, (T14.5)

where we assume that Ĥ0 is time independent, with a complete set of orthonormalized
stationary eigenstates

|Ψ(0)
n (t)〉 = e−iEnt/h̄ |ψn〉

(
〈r|Ψ(0)

n (t)〉 = Ψ(0)
n (r, t)

)
. (T14.6)

We suppose that these are known. Following the discussion above, we expand the unknown
solution of (T14.5) as

|Ψ(t)〉 =
∑
n

an(t) |Ψ(0)
n (t)〉, (T14.7)

which is the Hilbert-space version of (T14.4). Note that the expansion coefficient

an(t) = 〈Ψ(0)
n (t)|Ψ(t)〉 (T14.8)

is the amplitude of finding the system in the unperturbed state |Ψ(0)
n 〉 at time t, while |an(t)|2

is the corresponding probability. Given that V̂ (t) and hence Ĥ are Hermitian, we know that
|Ψ(t)〉 stays normalized for all times, so that∑

n

|an(t)|2 = 1, (T14.9)

even if the individual probabilities |an(t)|2 do change with time. This time dependence
(which is our main aim) is of course determined by the “Schrödinger equation” (T14.5).
Inserting the expansion (T14.7) we get

∑
n

ih̄ dandt |Ψ(0)
n (t)〉+ an ih̄

d

dt
|Ψ(0)

n (t)〉︸ ︷︷ ︸
En|Ψ(0)

n (t)〉

 =
∑
n

an

Ĥ0 |Ψ(0)
n (t)〉︸ ︷︷ ︸

En|Ψ(0)
n (t)〉

+V̂ (t)|Ψ(0)
n (t)〉

 .

Here we observe that the second term on the left cancels against the first term on the right,
because

ih̄
d

dt
|Ψ(0)

n (t)〉 = Ĥ0 |Ψ(0)
n (t)〉 = En |Ψ(0)

n (t)〉.

Multiplication from the left by 〈Ψ(0)
k (t)| and use of the orthonormality relation

〈Ψ(0)
k (t)|Ψ(0)

n (t)〉 = 〈ψk |ψn〉 = δkn (T14.10)

then gives a set of first-order differential equations for the amplitudes:

ih̄
dak(t)

dt
=
∑
n

〈Ψ(0)
k (t)|V̂ (t)|Ψ(0)

n (t)〉 an(t), (T14.11)
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or

ih̄
d

dt
ak(t) =

∑
n

eiωknt Vkn(t) an(t). (T14.12)

Here we have introduced the abbreviations

Vkn(t) ≡ 〈ψk |V̂ (t)|ψn〉 ≡
∫
ψ∗k (r) V̂ (r, t)ψn(r)d3r, and

ωkn ≡ (Ek − En)/h̄, (T14.13)

which are called respectively a matrix element of the perturbation and a Bohr frequency.
Note that the coupled set of differential equations (T14.11) can be written on matrix

form, if we wish:

ih̄
d

dt


a1(t)
a2(t)

...

 =


V11 V12e

iω12t · · ·
V21e

−iω12t V22
...



a1(t)
a2(t)

...

 . (T14.14)

This coupled set of equations, (T14.12) or (T14.14), is completely equivalent to the Schrödinger
equation; we have made no approximations so far.

Note that if the perturbation term V̂ (t) is put equal to zero, then “nothing happens”;
the coefficients ak(t) keep the values they had at t = 0. Thus, if in our example above we

had ak(0) = δki, then ak(t) = δki, and the atom remains in the initial state |Ψ(0)
i (t)〉.

Time-dependent perturbation theory

In time-dependent perturbation theory we assume that the perturbation V̂ (t) is weak, so
that the coefficients ak(t) change only slowly from their initial values. We also suppose that
the system was prepared in the unperturbed state |ψi〉 at t = 0, so that ak(0) = δki. As
a first approximation we may then set an(t) on the right-hand side of (T14.12) equal to
an(0) = δni. For sufficiently short times and/or sufficiently weak perturbations we thus have
the following approximation:

ih̄
d ak(t)

dt
≈
∑
n

eiωkntVni(t) δni = eiωkit Vki(t).

The amplitude of finding the perturbed system in the unperturbed state number f (f for
final) at time t then is

af (t) ≈ δfi +
1

ih̄

∫ t

0
eiωfit

′
Vfi(t

′) dt′. (T14.15)

For f 6= i this is a transition amplitude. We note that this amplitude is of first order
in the perturbation V̂ . (There is only one power of V̂ in the integral.) This means that
the transition probability is of second order in V̂ . Equation (T14.9) then implies that the
probability of finding the system in the initial state is

|ai(t)|2 = 1−
∑
f 6=i
|af 6=i(t)|2 = 1−O(V̂ 2). (T14.16)

that is, deviates from 1 only to second order in the perturbation.
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Detailed balancing

Since the perturbation V̂ (t) is supposed to be Hermitian, the matrix element entering the
first-order transition amplitude (T14.15) for the process 1→ 2 satisfies the relation

V21(t) ≡ 〈ψ2 |V̂ (t)|ψ1〉 = 〈ψ1 |V̂ (t)|ψ2〉∗ ≡ V ∗12(t). (T14.17)

For the ”reversed” process — transition from state number 2 at time t = 0 to state number
1 at time t — we then have from (T14.15) to first order (for ψ2 6= ψ1)

a2→1(t) =
1

ih̄

∫ t

0
V12(t′)eiω12t′dt′ =

1

ih̄

∫ t

0
V ∗21(t′)e−iωf21t

′
dt′

= −a∗1→2(t). (T14.18)

Thus, taking the absolute squares on both sides of this equation, we find that the first-order
transition probability from the state |Ψ1(0)〉 at time t = 0 to the state |Ψ2(t)〉 at time t is
the same as for the reverse process. This equality, valid to first order in the perturbation V̂ ,
is an example of the so-called principle of detailed balance.

Perturbation expansion

The approximate result (T14.15) can easily be improved. Integrating (T14.12) we have

ak(t) = δki +
1

ih̄

∑
n

∫ t

0
dt′ eiωknt

′
Vkn(t′)an(t′). (T14.19)

Substituting k → n and t→ t′, we have

an(t′) = δni +
1

ih̄

∑
m

∫ t′

0
dt′′ eiωnmt′′Vnm(t′′)am(t′′), (T14.20)

which may be inserted into (T14.19), giving

ak(t) = δki +
1

ih̄

∫ t

0
dt′ eiωkit

′
Vki(t

′)

+
1

ih̄

∑
n

∫ t

0
dt′ eiωknt

′
Vkn(t′) · 1

ih̄

∑
m

∫ t′

0
dt′′ eiωnmt′′Vnm(t′′)am(t′′).

This iteration procedure can be repeated. If we break it off by putting am(t′′) ≈ am(t′′ =
0) = δmi, we get

ak(t) = δki +
1

ih̄

∫ t

0
dt′ eiωkit

′
Vki(t

′)

+
(

1

ih̄

)2∑
n

∫ t

0
dt′ eiωknt

′
Vkn(t′)

∫ t′

0
dt′′ eiωnit

′′
Vni(t

′′) (T14.21)

+ O(V̂ 3).

I guess that you will have no problem writing down the next term simply from the system-
atics.
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14.3 Qualitative discussion

Let us try to understand qualitatively what happens after the initial preparation of the
system in the state |ψi〉 at t = 0. As we have seen above, probability will immediately
start to “leak” from the initial state into the other states. In the beginning, for small t, this
leakage is fairly modest; the integrals in (T14.15) (for f 6= i) are small, corresponding to
transition probabilities |af 6=i(t)|2 much smaller than 1, so that the amplitude ai(t) of being
found in the initial state is almost equal to 1. The first-order result (T14.15) then is a good
approximation.

In this course we shall only make use of the first-order result (T14.15), assuming that
the perturbation is sufficiently weak, or that the time t is sufficiently small, to make this a
good approximation.

“Sudden” changes of the Hamiltonian

In what follows we shall try to gain a little more insight by considering two extreme cases in
time-dependent perturbation theory, namely so-called sudden changes of the Hamiltonian
Ĥ(t), and the opposite case which is a very slow change, called an adiabatic change.

In the first case a change of Ĥ(t), from Ĥ0 to Ĥ1, takes place very rapidly, during a time
interval ∆t which is much shorter than any of the natural periods for the system we are
considering:

∆t << Tfi ≡
2π

ωfi
=

2πh̄

Ef − Ei
.

This is what we call a sudden change of Ĥ:

The phase factors eiωfit
′

in (T14.15) then stay approximately constant under the integration.
Therefore the transition probabilities at the time t0 + ∆t will be of the order of

|ai→f (t0 + ∆t)|2 ∼
∣∣∣∣1h̄(V1)fi∆t

∣∣∣∣2 <<
∣∣∣∣∣2π(V1)fi
Ef − Ei

∣∣∣∣∣
2

; f 6= i. (T14.22)

If we suppose that the matrix elements (V1)fi are not much larger than the energies of the
system, these probabilities will be much smaller than 1. This means that the “leakage” to
other states is insignificant, and that the probability of finding the system in the original
state is practically unchanged:

|ai(t0 + ∆t)| ≈ ai(t0) = 1.

Thus the state vector |Ψ(t)〉 and the corresponding wave function Ψ are “unable to react
immediately” to the sudden change of Ĥ.
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This can also be understood directly. When the change in Ĥ(t), from Ĥ0 to Ĥ1, takes
place in the time interval ∆t, we see from the Schrödinger equation that the state vector
changes by the amount

∆|Ψ(t)〉 = ∆t · 1

ih̄
Ĥ(t) |Ψ(t)〉

during this interval. Thus, when ∆t is sufficiently small, |Ψ(t)〉 is essentially unchanged.3

In the discussion above we have considered a “permanent” change of Ĥ. As another
example we might consider a case of a short transient perturbation, where V̂ (t) is a short
pulse, so that Ĥ = Ĥ0 both before t = 0 and after t = ∆t. As an example of such a
short pulse-like perturbation we may consider a heavy charged particle like a proton travelling
through matter with a velocity close to c.

An atomic electron close to the track of the proton will then experience a “Coulomb pulse”
of very short duration, ∆t ∼ a0/c ∼ 10−19 s, which is much shorter than the “natural
periods” of the outer electrons, Tfi = 2π/ωfi ∼ 10−16 s.

With matrix elements Vfi of the order of e2/(4πε0a0) we then get transition probabilities of
the order of

|ai→f |2 =

∣∣∣∣∣ 1

ih̄

∫ ∆t

0
Vfi(t

′) dt′
∣∣∣∣∣
2

∼
∣∣∣∣∆t · Vfih̄

∣∣∣∣2

=

∣∣∣∣∣a0/c

h̄

e2

4πε0a0

∣∣∣∣∣
2

= α2,

where α = e2/(4πε0h̄c) ≈ 127.036−1 is the fine-structure constant. Thus, for each of the
atoms along the track the probablity of excitation or ionization is small when the proton
is moving fast. This means that the average energy loss for the proton is small for each
“collision” along the track.

Adiabatic changes of Ĥ

The opposite extreme (compared to the sudden change) is a case in which the Hamiltonian
changes very slowly compared to the natural periods Tfi of the system. Suppose that the
change is transient, as indicated in the figure.

3This is also how we prove that the state vector and the wave function are continuous in time.
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Here, V̂ (t) is zero for t < 0 and for t > t1, where t1 >> Tfi = 2π/ωfi. According to
(T14.15) the transition amplitudes for t > t1 then are given by

af 6=i(t) =
1

ih̄

∫ t1

0
eiωfit

′
Vfi(t

′) dt′, (t ≥ t1)

where Vfi(t
′) is a very slowly varying function compared to the oscillations of the exponential

eiωfit
′
= cos(ωfit

′) + i sin(ωfit
′)

(provided that Ef 6= Ei). Because of these rapid oscillations the contributions to the integral

above cancel almost completely. Thus for a very slow (adiabatic) change of Ĥ we arrive at

The adiabatic approximation:
The transition probabilities are negligible.

(T14.23)

Note that the integral above essentially is the Fourier transform of the matrix element Vfi(t),
for the frequency ωfi. The transition amplitude is essentially a “high-frequency” component
of Vfi, and these components are very small. The dominant Fourier componets of Vfi are
those for frequencies in the range ω ∼ 2π/t1 (<< ωfi).

An adiabatic change of Ĥ does not have to be transient (as in the discussion above), but
can also lead to a permanent change of Ĥ, as indicated in the next figure.

It can be shown that if the system is in a given eigenstate of Ĥ0 at t = 0, then at t = t1
it will be in the corresponding eigenstate of Ĥ(t1) = Ĥ1 (e.g. the ground state), with a
probability close to 1. A classical analogy: A violin string vibrating in the first harmonic
mode will remain in this mode during adiabatic (slow) changes of the string tension.

When the change in Ĥ is neither sudden nor adiabatic,

transitions do occur. An example is a proton travelling with a velocity of the same order
as that of the atomic electrons it encounters on its way. The electrons then experience a
perturbation V̂ (t) with significant Fourier components in the same frequency range as ωfi.
This may result in sizable transition amplitudes into excited or ionized states, corresponding
to a much higher rate of energy loss for the proton than in the case of a high proton velocity
(discussed above). Semiclassically we may state that under such conditions the chances are
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fairly high that an atomic electron recieves a Coulomb “push” (or “pull”) which takes it to
a higher energy level.

The figure shows a classical setting which can be used to illustrate the different cases
discussed above: Applying a (rather strong) force over a very short time interval only hurts,
and does not add much to the excitement. A very slowly varying force, more or less constant
over several periods, is also very boring. However, if we push with a force comparable with
the other forces in the system over let us say half a period, there will be cheers.

14.4 Harmonic perturbations

Another way to reach the same goal is to apply a periodic force, F = F0 cos(ωt). Here, we
know from mechanics and from practical experience that if ω is close to the eigenfrequency
of the swing, the energy can increase or decrease considerably, depending on whether the
force acts in phase or in counterphase with the motion, even with a fairly weak force. On
the other hand, if ω is not close to the eigenfrequency, the applied force does not help much.

A similar resonance phenomenon also occurs in quantum mechanics, where harmonic
perturbations play an important role. We assume a perturbation term with the form

V̂ (r, t) = V̂(r)e−iωt + V̂†(r)eiωt. (T14.24)

(An example would be an electromagnetic wave E = êzE0 cos(k·r− ωt) incident on a hy-
drogen atom. This would roughly correspond to V̂(r) = 1

2
eE0z exp(ik·r). 4) With

〈ψf |V̂(r)|ψi〉 ≡ Vfi and (T14.25)

〈ψf |V̂†(r)|ψi〉 = 〈ψi |V̂(r)|ψf 〉∗ = V∗if , (T14.26)

the matrix elements Vfi(t) occurring in the transition amplitude (T14.15) then become

Vfi(t) = 〈ψf |V̂ (r, t)|ψi〉 = Vfi e−iωt + V∗if eiωt. (T14.27)

4There is also a magnetic force −ev×B, but since the amplitude of the B-field is a factor c smaller than
that of the E-field, the ratio between the magnetic and electric forces goes as v/c, which is of the order of
the fine-structure constant for the electron in the hydrogen atom.
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Here, the quantities Vfi are time independent. The first-order transition amplitude (for
f 6= i) then is given by two simple integrals over oscillating exponentials:

ai→f (t) =
1

ih̄
Vfi

∫ t

0
ei(ωfi−ω)t′dt′ +

1

ih̄
V∗if

∫ t

0
ei(ωfi+ω)t′dt′ (T14.28)

= Vfi
1− ei(ωfi−ω)t

h̄(ωfi − ω)
+ V∗if

1− ei(ωfi+ω)t

h̄(ωfi + ω)
. (T14.29)

Let us consider a transition from the hydrogen ground state (ψ1) to a state (ψ2) belonging
to the first excited level. The excitation energy then is Ef − Ei = E2 − E1 = 10.2 eV, corre-
sponding to a Bohr frequency ωfi = (E2−E1)/h̄ = 10.2 eV/(6.58 ·10−16eVs)=1.55·1016 s−1.
It turns out that the size of Vfi is of the order that could be expected from the analogy with
the swing, namely the force eE0 on the electron multiplied by the atomic radius: Vfi ∼ eE0a0.
This energy amount is in practice much smaller than h̄ωfi = Ef − Ei. As a consequence,
the transition amplitude is very small, except for the case where the denominator in the first
term, h̄(ωfi − ω), is small. This happens when

ω ≈ ωfi, (T14.30)

which is the quantum-mechanical resonance condition in this case. In this example, the
second term never is large, because the denominator ωfi + ω > ωfi never is small.

We could, however, turn the example around, and consider a transition from the first
excited level to the ground state. Then the Bohr frequency ωfi = (E1 − E2)/h̄ is negative,
and it is only the second term in (T14.29) that can become large; the resonance condition
in this case is

ω ≈ −ωfi. (T14.31)

In our example the harmonic perturbation is due to an electromagnetic wave with angular
frequency ω. When the resonance condition is satisfied, h̄ω ≈ E2 − E1, we see that the
transition from ψ1 to ψ2 corresponds to absorption of the energy h̄ω from the wave:

In the reverse prosess we have stimulated emission of the same amount.

Experimentally, these processes correspond respectively to absorption and stimulated emis-
sion of a photon; cf Einstein’s argument in 1917, which was discussed in Lecture notes 8
(section 8.3.d).5

5The theoretical description of photons requires quantization of the electromagnetic field, which will be
done in a later course.
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The transition probabilities of both processes depend critically on how closely the res-
onance condition is satisfied, i.e. on what we might call the “energy mismatch”. In the
absorption case this is

h̄(ωfi − ω) = Ef − Ei − h̄ω = E2 − E1 − h̄ω ≡ ε.

In the emission case it is

h̄(ωfi + ω) = Ef − Ei + h̄ω = E1 + h̄ω − E2.

Thus in the absorption case we have

|ai→f (t)|2 = |Vfi|2F (t, Ef − Ei − h̄ω) = |Vfi|2F (t, ε), (T14.32)

where

F (t, ε) ≡
∣∣∣∣∣1− eiεt/h̄ε

∣∣∣∣∣
2

=

∣∣∣∣∣eiεt/2h̄ε
(e−iεt/2h̄ − eiεt/2h̄)

∣∣∣∣∣
2

=
t2

h̄2

sin2(εt/2h̄)

(εt/2h̄)2
. (T14.33)

Here, Vfi(Ef , Ei) is a slowly varying function of the energies, while F (t, ε) is very sharply
peaked about ε = 0 (except for very short times t). The maximum is F (t, 0) = t2/h̄2,
and the half-width ∆ε is roughly half the distance between the two zeros at εt/2h̄ = ±π,
so that ∆ε · t/2h̄ ≈ π, that is, ∆ε ≈ 2πh̄/t.

Thus, for increasing t the maximum increases as t2/h̄2, while the width decreases as 2πh̄/t.
This means that the area under the curve is proportional to t. For increasing t the function
F (t, ε) therefore approaches a delta function in ε, multiplied by t and some constant C,
F (t, ε)→ C t δ(ε). This constant is easily determined by calculating the area under the
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curve:

C t =
∫ ∞
−∞

F (t, ε)dε =
t2

h̄2

∫ ∞
−∞

sin2(εt/2h̄)

(εt/2h̄)2
dε

=
t2

h̄2

2h̄

t

∫ ∞
−∞

sin2 x

x2
dx︸ ︷︷ ︸

π

=⇒ C =
2π

h̄
.

Thus for large t

F (t, ε) ≈ 2π

h̄
t δ(ε) (T14.34)

=
2π

h̄
t δ(Ef − Ei − h̄ω),

so that the transmission probability for absorption is given approximately by

|ai→f (t)|2 ≈
2π

h̄
|Vfi|2 t δ(Ef − Ei − h̄ω) ( absorption ). (T14.35)

For the reverse process of stimulated emission we get in the same manner (with |V∗if | = |Vif |)

|ai→f (t)|2 ≈
2π

h̄
|V∗if |2 t δ(Ef − Ei + h̄ω)

(
stimulated

emission

)
. (T14.36)

The proportionality with t in these equations is important for two reasons:
(i) Firstly, it is obvious that these formulae are not valid for arbitrarily large t. Otherwise

the probabilities |ai→f (t)|2 would sooner or later exceed 1, and that is certainly not allowed.
In fact, the first-order formulae above are only valid as long as the probability |ai(t)|2 stays
close to 1, requiring that the sum ∑

f 6=i
|ai→f (t)|2

of all the transition probabilities is much smaller than 1 (cf equation (T14.9) and the discus-
sion in section 14.2 above). The formulae (T14.35) and (T14.36) can therefore only be used
in a limited time interval. The upper limit will depend on the system we are considering,
the strength of the perturbation, etc. Thus the delta functions are only approximate; the
width of the peak above is finite. There is also a limitation on t from below; we want t to be
so large that the width ∆ε = 2πh̄/t is much smaller than the relevant energy scale (given
by Ei and Ef ).

(ii) Secondly, these limitations on t usually pose no problem, because what is really
interesting about the formulae above is that the transition probabilities per unit time, i.e., the
transition rates for respectively absorption and stimulated emission are time independent.
Thus, for the case where absorption causes excitation from ψ1 to ψ2 the transition rate is

w1→2 ≡
|a1→2(t)|2

t
=

2π

h̄
|V21|2 δ(E2 − E1 − h̄ω). (T14.37)
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For the reverse process, de-excitation via stimulated emission, the rate is (with Vif = V21)

w2→1 ≡
|a2→1(t)|2

t
=

2π

h̄
|V21|2 δ(E1 − E2 + h̄ω). (T14.38)

Since the two δ-functions are equal, we arrive at the following conclusion:

With a harmonic perturbation (T14.24), we
can state that for any pair of states (ψ1 and
ψ2) the first-order transition rate for stimu-
lated emission equals that for absorption:

w2→1 = w1→2.

(T14.39)

In the example mentioned above, we considered transitions between the discrete states
ψ1 and ψ2, which are examples of what we might call discrete → discrete transitions. The
resonance condition, ω ≈ (E2 − E1)/t, can then be met only if the atom is perturbed by
a continuous spectrum of radiation. We shall return to this problem later.

14.5 Discrete → continuous transitions. Fermi’s Golden

Rule

As another example, we could use monochromatic radiation with a photon energy h̄ω high
enough to ionize the atom. If the initial state ψi is the hydrogen ground state ψ1, this
requires photons with an energy higher than 13.6 eV. Then the relevant final states ψf are
continuum states for the emitted electron, with an energy Ef ≈ h̄ω − 13.6 eV, and the
process we are considering is photo-ionization or the photoelectric effect.

The total rate of transitions, Wi, from the initial state ψi then is given by

Wi =
∑
f

wi→f , (T14.40)

where the summation goes over all states ψf with energies close to or within the peak dis-
cussed above. Here we seem to be running into a problem, because the number of continuum
states really is infinite. We can avoid this (apparent) problem by imagining our atom (and
the whole experiment) being enclosed in a large box (cubical if you like) with a finite but
large volume V0. By taking this “reaction volume” V0 = L3 sufficiently large, we will then
have what is called a quasi continuum of states. With periodic boundary conditions the
normalized wave functions are (cf Lecture notes 8, section 8.1)

ψf (r) =
1√
V0

eipf ·r/h̄, pf =
2πh̄

L
{nx, ny, nz}, nx = 0,±1, · · · , etc. (T14.41)

This way the number of final states within our “peak” is very large, but finite.
The electrons can be emitted in any direction.
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Let us consider electrons emitted into the solid-angle element dΩf . We then remember from
the discussion in section 8.1.d that the number of electron states in the phase-space element
V0d

3pf = V0p
2
fdpf dΩf is

dN =
V0 d

3pf
h3

=
V0

h3
p2
f

dpf
dEf

dEf dΩf ≡ ρ(Ef ) dEf . (T14.42)

With dpf/dEf = 1/vf we then get the following density of final states (number of states
per unit energy within dΩf ):

ρ(Ef ) =
dN

dEf
=

V0

h3

p2
f

vf
dΩf

(
relativistic, for

particles and photons

)
(T14.43)

=
V0

h3
mpf dΩf .

(
non-relativistic, for

particles with mass m

)

Since the number of final states within the peak around Ef = Ei + h̄ω is very large, we
may replace the summation over final states (within dΩf ) by an integral over Ef . Because
the emission angles are fixed (within dΩf ), and because the energies Ef are restricted by the
δ-like peak, we understand that the matrix element Vfi will be approximately constant during
the integration. According to (T14.37) the transition rate (into dΩf ) therefore becomes

dW(i→dΩf ) =
∑
f

wi→f =
2π

h̄

∫
|Vfi|2 δ(Ef − Ei − h̄ω) ρ(Ef ) dEf ,

or

dW(i→dΩf ) =
2π

h̄

{
|Vfi|2 ρ(Ef )

}
Ef=Ei+h̄ω

(
Fermi’s

Golden Rule

)
. (T14.44)

This very important formula, first discovered by Dirac, is known as Fermi’s Golden Rule.
Because this equation is so intimately connected with (T14.37), also the latter is sometimes
called Fermi’s golden rule.

Note that the square of the matrix element includes a factor 1/V0 from (T14.41), which
cancels against the factor V0 in ρ(Ef ). Thus the transition rate is independent of the imagined
volume V0, as it should be.

To find the total rate of transitions (T14.40) from the state ψi, we would have to calculate
the matrix element Vfi for the photoelectric effect, including the way it depends on the
emission angles, and then integrate the above formula over all angles. (See section 12.6 in
Hemmer.)
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14.6 Scattering on static potential

In a scattering process the particles are unbound both before and after the scattering, so here
we are talking about continuous → continuous transitions. Suppose that one particle
collides with another, and that the interaction potential is V (r1 − r2). Introducing the
relative coordinate r = r1 − r2 and the reduced mass m = m1m2/(m1 +m2), we
can treat this scattering problem as a one-particle problem, where a (fictitious) particle with
mass m is scattered on the static potential V (r). (Cf section 5.8 in Hemmer, and 5.7 in
B&J).

The Hamiltonian for this “reduced” particle may be written as Ĥ = Ĥ0 + V (r), where
Ĥ0 = p̂2/2m is the free-particle Hamiltonian and the potential V (r) is considered as a
perturbation (time independent in this case). As our unperturbed basis we may then use
the momentum eigenfunctions (T14.41), which are eigenfunctions of Ĥ0.

Suppose that the particle is at t = 0 preparered in the state

ψi(r) =
1√
V0

eipi·r/h̄.

Since this initial state is an eigenfunction of Ĥ0, but not of the complete Hamiltonian Ĥ, the
perturbation (i.e. the potential) will immediately begin to cause a “leakage of probability”
into other momentum eigenstates

ψf (r) =
1√
V0

eipf ·r/h̄,

and we may ask to find the transition rate from ψi to ψf .
One way to solve this problem is to use time-dependent perturbation theory.6 With the

time-independent matrix element

Vfi(t) = Vfi ≡
∫
ψ∗f (r)V (r)ψi(r)d3r

=
1

V0

∫
ei(pi−pf )·r/h̄V (r)d3r, (T14.45)

the integral in (T14.15) simplifies to
∫ t

0 exp(iωfit
′)dt′. For pf 6= pi we then find the

transition probability

|ai→f (t)|2 =
∣∣∣∣Vfiih̄

∫ t

0
eiωfit

′
dt′
∣∣∣∣2 = |Vfi|2 ·

∣∣∣∣∣1− eiωfit

h̄ωfi

∣∣∣∣∣
2

≡ |Vfi|2 · F (t, Ef − Ei).

Here, according to (T14.34),

F (t, Ef − Ei) ≈
2π

h̄
t δ(Ef − Ei).

Thus the transition rate to the state ψf is

wi→f ≈
2π

h̄
|Vfi|2δ(Ef − Ei). (T14.46)

In this example of Fermi’s golden rule, the delta function is only approximate, as in (T14.37).
Thus transitions occur only to final states with energy Ef = Ei +O(2πh̄/t).

6Another way is to use scattering theory, which is not a part of the present course, but will be taught in
TFY4205 Quantum Mechanics.
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Scattering cross section

In a scattering experiment the initial state ψi can be prepared by collimating a beam of
particles with reasonably sharp energy, so that the collimated beam contains particles with
a well-defined momentum pi incident on the target. (The target usually contains many
particles.)

In many experiments the projectile particle is scattered on one of several target
particles which are at rest in the lab. Note that the scattering angle θlab in the
lab system differs from the scattering angle θ in the center-of-mass system (cf
Bransden & Joachain, page 591).

Suppose that the detector accepts particles scattered into the solid angle dΩ. Then, according
to (T14.43) and (T14.46), the probability rate for the particle to be counted is

dW(i→dΩ) =
∫
wi→f ρ(Ef )dEf =

2π

h̄
{|Vfi|2 ρ(Ef )}(Ef=Ei)

=
2π

h̄
|Vfi|2

V0

h3
mpdΩ; (pf = pi ≡ p). (T14.47)

The integral over this quantity over all angles,

Wi =
∫

Ω
dW(i→dΩ),

is the probability per unit time that the incident particle is scattered, i.e. the total scattering
rate.

Before proceeding, let us make a (completely unrealistic) thought experiment:
Suppose that we have an incoming flux ji of 100 particles per cm2 per second,
and suppose that our target causes a scattering rate of W = 300 particles
per second. This means that the target effectively removes a cross section of
σ = 3 cm2 of the incoming flux:
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σ =
W

ji
=

scattering rate

incoming flux

(
scattering

cross section

)
(T14.48)

=
300 s−1

100 cm−2s−1
= 3 cm2.

The moral of this thought experiment is that the quantity σ = W/ji is a mea-
sure of the scattering ability of the target. This ability can even be differentiated
with respect to angles: Suppose that the scattering rate into the solid angle dΩ
is dW . Then the scattering into dΩ effectively removes a cross section

d σ =
dW

ji
=

scattering rate into dΩ

incoming flux

(
differential scattering

cross section

)

(T14.49)
of the incident flux.

Let us now return to our scattering experiment, where we again imagine that the whole
experiment is enclosed in a fictitious box with volume V0 = L3. In the initial state there is
one particle in this volume. This corresponds to a density ρi = |ψi|2 = 1/V0 and a flux

ji = <e[ψ∗i
h̄

im
ψ′i] = |ψi|2vi =

1

V0

p

m
. (T14.50)

With a target consisting of only one particle we thus arrive at the following differential
scattering cross section (per target particle):

dσ

dΩ
=

dW

ji dΩ
=
∣∣∣∣ m

2πh̄2

∫
e−iQ·rV (r)d3r

∣∣∣∣2 ≡ |fB(Q)|2, (T14.51)

where
Q ≡ (pf − pi)/h̄ ≡ q/h̄. (T14.52)

Comments:
(i) The result is independent of the ”reaction volume” V0, as it should be.
(ii) The quantity fB(Q) is called the scattering amplitude in the first Born ap-

proximation. The formula is only approximate because it has been derived by the use of
first-order perturbation theory.

(iii) The vector q ≡ pf − pi ≡ h̄Q is the momentum transfer from the target particle
to the projectile particle (see the figure below). Note that the dependence on angles of this
differential cross section enters only through Q if the potential V (r) is spherically symmetric.
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(iv) Note also that the scattering amplitude fB(Q) essentially is the Fourier transform
of the potential V (r). If the Born approximation is reasonably accurate, we can map out
fB(Q) as a function of Q experimentally, by measuring the differential cross section dσ/dΩ
as a function of the scattering angles (θ and φ) for various energies Ei = p2/2m. By Fourier
inversion from fB(Q) to V (r) we can then determine the interaction potential between the
two particles.

(v) Scattering experiments are in general the most important method in the investigation
of the structure of particles and of the interactions between them. Contrary to the example
above, the scattering usually is inelastic, in the sense that the particle content (and the
number of particles) in the final state differs from that in the initial state. This is particularly
noteworthy in modern high-energy experiments, where the number of particles (multiplicity)
in the final state increases more or less in proportion to the energy available. Happily, there
are a few events where this not the case. This is when the collision results in the creation
of one or more very heavy particles, maybe even new ones that have not been seen before.
The detection of new heavy particles is one of the main goals of the experiments that are
now being carried out at CERN.


