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These notes repeat some central points from Lecture notes 2, and cover some new
stuff as well, namely measurements of degenerate eigenvalues, together with the
momentum representation of quantum mechanics.

Lecture notes 7

7. Introduction to FY2045/TFY4250
FY2045/TFY4250 Quantum mechanics I is a continuation of — and is built
on — FY1006/TFY4215 Introduction to quantum physics. It is therefore very
important to master the contents of the latter in order to be able to follow
the present course. This means that you will need to repeat on your own the
contents of the introductory course. The present notes are confined to a reminder
about the fundamental postulates, as formulated in Lecture notes 2. We go on to
cover some new stuff, namely how to formulate the measurement postulate when
measuring a degenerate eigenvalue. We then repeat the (Fourier) expansion of
the system wave function in terms of momentum eigenfunctions, showing that
the square of the coefficient function (the Fourier transform), |Φ(p, t)|2, is the
probability density in momentum space. This is used as an introduction to the
last subsection, in which we derive the momentum representation of quantum
mechanics, showing that Φ(p, t) works as a wave function in momentum space.

7.1 Basic postulates (Hemmer 2.1, B&J, Lecture notes 2)

The basic postulates, as formulated in Lecture notes 2 were:

A. The operator postulate

To each physical observable quantity F there corresponds
in quantum-mechanical theory a linear operator F̂ .

(T7.1)

B. The wave-function postulate

The state of a system is described, as completely as
possible, by the wave function Ψ(qn, t). The time
development of the wave function (and hence of the
state) is determined by the Schrödinger equation,

ih̄
∂Ψ

∂t
= ĤΨ,

where Ĥ is the Hamiltonian of the system.

(T7.2)
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C. Expectation-value postulate

When a large number of measurements of an obser-
able F is made on a system which is prepared in a
state Ψ(q1, q2, · · · , qn, t) (before each measurement),
the average F of the measured values will approach
the theretical expectation value, which is postulated
to be

〈F 〉Ψ =
∫

Ψ∗F̂Ψ dτ,

where dτ = dq1dq2 · · · dqn and where the integration
goes over the whole range of each of the variables.

(T7.3)

D. Measurement postulate

(i) The only possible result of a precise measurement
of an observable F is one of the eigenvalues fn of the

corresponding linear operator F̂ .

(ii) Immediately after the measurement of the eigen-
value fn, the system is in an eigenstate of F̂ , namely,
the eigenstate ψn corresponding to the measured
eigenvalue fn.

(T7.4)

7.2 Measurement of a degenerate eigenvalue

If the measured eigenvalue fn is non-degenerate, that is, if the eigenvalue equation

F̂ψn = fnψn

has only one solution ψn for the eigenvalue fn, it follows from (ii) above that the system is
left in this state ψn (immediately) after the measurement. This state is unique, apart from
an undetermined phase factor which has no physical significanse.

In the opposite case, when the eigenvalue fn is degenerate with (degree of) degeneracy
gn, the above eigenvalue equation has gn solutions ψni which we may enumerate with an
extra index i:

F̂ψni = fnψni ; i = 1, · · · , gn.
In this case we shall now see that point (ii) in the measurement postulate (stating that the
measurement leaves the system in an eigenstate corresponding to the measured eigenvalue)
must be formulated more precisely.

Let us suppose that the set fn of eigenvalues is discrete, and that the set

{ψni|n = 1, 2, · · · ; i = 1, · · · , gn}
of eigenfunctions is orthonormalized. Since these eigenfunctions form a complete set (basis),
the state of the system prior to the measurement can be expanded in this set:

Ψ =
∑
n

gn∑
i=1

cniψni. (T7.5)
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By projecting Ψ onto ψni,

〈ψni,Ψ 〉 =

〈
ψni ,

∑
k

∑
j

ckjψkj

〉
=
∑
k

∑
j

ckjδnkδij = cni,

we find in the usual manner that the expansion coefficient is

cni = 〈ψni,Ψ 〉 ≡
∫
ψ∗niΨdτ.

As in section 2.5.d of Lecture notes 2, we consider a series of measurements of the
observable F on an ensemble which is prepared in the state Ψ. According to the measurement
postulate, the theoretical expectation value of F is

〈F 〉 =
∑
n

Pn fn,

where Pn is the probability of measuring the eigenvalue fn. At the same time it follows from
the expectation-value postulate that

〈F 〉Ψ =
∫

Ψ∗ F̂ Ψdτ =
∫

(F̂Ψ)∗Ψdτ

=
∫ (∑

n

∑
i

cni F̂ψni

)∗
Ψ dτ

=
∑
n

∑
i

c∗nifn
∫
ψ∗niΨdτ︸ ︷︷ ︸
cni

=
∑
n

( gn∑
i=1

|cni|2
)
fn.

Since the two formulae for the expectation value are valid for an arbitrary Ψ, we can conclude
that the probability of measuring the eigenvalue fn when the system is in the state (T7.5) is

Pn =
gn∑
i=1

|cni|2. (T7.6)

Note that the corresponding result in the non-degenerate case is given by (T2.80) in Lecture
notes 2.

Before reformulating point (ii) in the measurement postulate (T7.4), we note that Ψ
(equation (T7.5)) may be written as

Ψ =
∑
n

Ψn, with Ψn ≡
gn∑
i=1

cniψni.

Here, we also note that Ψn — as the gn contributions ψni — has the eigenvalue fn. We may
therefore call Ψn the part of Ψ which is “compatible with the eigenvalue fn”. It turns out
that point (ii) in the measurement postulate must be formulated as follows:

Immediately after the measurement of the eigenvalue
fn the system is left in the (normalized) state

Ψn

||Ψn||
=

∑gn
i=1 cniψni

|| − − ” −−||
.

(T7.7)
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(In this expression, the denominator is the norm of the numerator.) The moral is that
the part of the wave function Ψ before the measurement which is not compatible with the
measured eigenvalue fn “is removed” by the measurement. This is often called a “wave-
function collapse”. Note by the way that the above result for the probability Pn is the
squared norm of Ψn,

Pn =
∑
i

|cni|2 = ||Ψn||2

(so that
∑

n Pn =
∑

n ||Ψn||2=1).

Example Let us as an example consider a three-dimensional isotropic harmonic oscillator,
with the orthonormalized eigenfunction set

ψnx(x)ψny(y)ψnz(z) ≡ ψnxnynz

and the energy eigenvalues

h̄ω(nx + ny + nz + 3/2) ≡ h̄ω(N + 3/2).

Suppose that the oscillator is at time t = 0 prepared in the state

Ψ =
√

0.5ψ000︸ ︷︷ ︸
Ψ0

+
√

0.1(ψ100 + ψ010 + ψ001)︸ ︷︷ ︸
Ψ1

+
√

0.1(ψ200 + iψ020)︸ ︷︷ ︸
Ψ2

.

Here, we observe that the squared norms of the three contributions to Ψ are

||Ψ0||2 = 0.5 , ||Ψ1||2 = 3 · 0.1 , ||Ψ2||2 = 2 · 0.1,

so that ||Ψ||2 = 1. Thus Ψ is normalized. Furthermore, Ψ0, Ψ1 and Ψ2 have respectively
N = 0, 1 and 2. Therefore, the possible measured values of the energy are E0 = 3

2
h̄ω

(N = 0), E1 = 5
2
h̄ω (N = 1) and E2 = 7

2
h̄ω (N = 2). The respective probabilities are

P0 = ||Ψ0||2 = 0.5 , P1 = 0.3 and P2 = 0.2.

The corresponding normalized states immediately after the measurement are

Ψ0

||Ψ0||
= ψ000 ,

Ψ1

||Ψ1||
=

1√
3

(ψ100 + ψ010 + ψ001) and
Ψ2

||Ψ2||
=

1√
2

(ψ200 + iψ020).

In the next subsection we shall repeat the physical interpretation of the expansion co-
efficients in the continuous case, by taking as an example the expansion of Ψ in terms of
momentum eigenfunctions.

7.3 Physical interpretation in the continuous case

The physical interpretation of the expansion coefficients in the continuous case is described
in a very clear and concise way page 33–34 in Hemmer. (Sea also Griffiths page 106–107,
B&J page 208 and Lecture notes 2.)

With the continuous spectrum of momentum eigenfunctions

ψp(x) = (2πh̄)−1/2eipx/h̄, p̂xψp(x) = pψp(x), p ∈ (−∞,∞) (T7.8)
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as a basis, the expansion of an arbitrary quadratically integrable function becomes a Fourier
integral. For the time-dependent system wave function, we have for example

Ψ(x, t) =
∫ ∞
−∞

Φ(p, t)ψp(x) dp. (T7.9)

Since this function depends on time, so will also the Fourier transform Φ(p, t):

Φ(p, t) = 〈ψp,Ψ(t) 〉 ≡
∫ ∞
−∞

ψ∗p (x) Ψ(x, t) dx. (T7.10)

In analogy with the previous section, we now assume that a series of measurements of the
momentum px are made on an ensemble prepared in the state Ψ. Since the measured values
are distributed continuously over the entire spectrum, we may then write the expectation
value on the form

〈 px 〉 =
∫ ∞
−∞

P (x, t) p dp,

where P (p, t)dp is the probability of finding px in the interval [p, p + dp] and P (p, t) is the
probability density in “p-space”, at time t. On the other hand, we have from the expectation-
value postulate that

〈 px 〉Ψ =
∫ ∞
−∞

dxΨ∗(x, t) p̂x Ψ(x, t) =
∫ ∞
−∞

dx (p̂xΨ(x, t))∗Ψ(x, t)

=
∫ ∞
−∞

dx
(
p̂x

∫ ∞
−∞

dpΦ(p, t)ψp(x)
)∗

Ψ(x, t).

Here we replace p̂xψp(x) with pψp(x) and change the order of the integrations:

〈 px 〉Ψ =
∫ ∞
−∞

dpΦ∗(p, t) p
(∫ ∞
−∞

dxψ∗p (x) Ψ(x, t)
)

=
∫ ∞
−∞

Φ∗(p, t) pΦ(p, t) dp =
∫ ∞
−∞

p |Φ(p, t)|2dp.

By comparing the two formulae for 〈 px 〉 we see that the physical interpretation of the
“expansion coefficient” (the Fourier transform Φ(p, t)) may be formulated as follows:

When the system is in the state Ψ(x, t) before the measurement, the prob-
ability of measuring px in the interval (p, p+ dp) is

P (p)dp = |Φ(p, t)|2dp = |〈ψp,Ψ 〉|2 dp ≡
∣∣∣∣∫ ψ∗p (x)Ψ(x, t) dτ

∣∣∣∣2 dp. (T7.11)

Thus the probability density in “p space” is the square of the Fourier transform Φ(p, t). This
is analoguous to |Ψ(x, t)|2 being the probability density in x space .

7.4 The momentum-space formulation of quantum me-

chanics***1

This “similarity” between the position-space and momentum-space probability densities is
not accidental. As explained in section 4.6 in Hemmer and in 3.9 in B&J, it is straightforward

1Sections marked with *** are not compulsory in FY1006/TFY4215.
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to obtain a formulation of the theory in which the Fourier transform Φ(p, t) of Ψ(x, t) plays
the role of a “wave function” in momentum space. This role is analogous to that played
by the ordinary wave function Ψ(x, t) in the position-space formulation of quantum
mechanics, which we are now beginning to get used to, and which is most commonly used
on the introductory level.

In the new momentum-space formulation of quantum mechanics, we already
know how to obtain the expectation values of observables which depend only on px, like e.g.
K = p2

x/2m. Since the probability density in momentum space is |Φ(p, t)|2, we have that

〈F (px) 〉Φ =
∫ ∞
−∞
|Φ(p, t)|2F (p)dp =

∫ ∞
−∞

Φ∗(p, t)F (p) Φ(p, t) dp, (T7.12)

which is analogous to

〈V (x) 〉Ψ =
∫ ∞
−∞

Ψ∗(x, t)V (x) Ψ(x, t) dx

in the position-space formulation. The “moral” is that in the momentum-space formulation,
the observable px is represented by an operator which simply is (multiplication by) the
number p,

p̂x = p. (T7.13)

This is analogous to x̂ = x in the position-space formulation.
What about the operators representing x and functions of x (like e.g. V (x)) in the new

formulation? To find the answer, we shall assume that the potential V (x) can be expanded
in a Taylor series,

V (x) =
∑
n

vnx
n,

where the expansion coefficients are vn. The expectation values of x and powers of x can
now be found starting with the old formulation, where the expectation value of xn is

〈xn 〉 =
∫ ∞
−∞

Ψ∗(x, t)xn Ψ(x, t) dx =
∫ ∞
−∞

(xnΨ)∗Ψ dx

=
∫ ∞
−∞

dx
(
xn
∫ ∞
−∞

dpΦ(p, t)ψp(x)
)∗

Ψ(x, t).

Here we apply the identity

x eipx/h̄ =

(
h̄

i

∂

∂p

)
eipx/h̄, (T7.14)

which means that

xn ψp(x) =

(
h̄

i

∂

∂p

)n

ψp(x). (T7.15)

Inserting this and rearranging we then have

〈xn 〉 =
∫ ∞
−∞

dx

(∫ ∞
−∞

dpΦ(p, t)

(
h̄

i

∂

∂p

)n

ψp(x)

)∗
Ψ(x, t)

=
∫ ∞
−∞

dpΦ∗(p, t)
(
− h̄
i

∂

∂p

)n ∫ ∞
−∞

dxψ∗p (x)Ψ(x, t)︸ ︷︷ ︸
Φ(p,t)

=
∫ ∞
−∞

dpΦ∗(p, t)
(
− h̄
i

∂

∂p

)n

Φ(p, t). (T7.16)
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Comparing this expression with the general “sandwich” recipe for expectation values,

〈F 〉Φ =
∫ ∞
−∞

dpΦ∗(p, t) F̂ Φ(p, t), (T7.17)

we can conclude that the observable xn is represented in the momentum-space formulation
by the nth power of the operator

x̂ = − h̄
i

∂

∂p
. (T7.18)

For a function of x like e.g. V (x) =
∑
vnx

n we find that

〈V (x) 〉Φ =
∫ ∞
−∞

dpΦ∗(p, t)
[∑

n

vn

(
− h̄
i

∂

∂p

)n]
Φ(p, t). (T7.19)

Thus the potential energy is in the new formulation represented by the operator

∑
n

vn

(
− h̄
i

∂

∂p

)n

≡ V̂

(
− h̄
i

∂

∂p

)
.

This is called an operator function, and the Taylor expansion on the left shows exactly
what we mean by this. As an example, the harmonic-oscillator potential V (x) = 1

2
mω2x2

is in this formulation represented by the operator V̂ = 1
2
mω2(− h̄

i
∂
∂p

)2.
We have now learnt how to calculate expectation values of observables depending on x

and px in the new formulation, from the “wave function” Φ(p, t). But can we be sure that
this function contains all possible information about the system, as is the case for Ψ(x, t)
according to the wave-function postulate on page 1? The answer is yes: If we know the
function Φ(p, t), then we also know Ψ(x, t), via the Fourier integral

Ψ(x, t) =
∫ ∞
−∞

Φ(p, t)ψp(x) dp,

and vice versa, via the Fourier transform

Φ(p, t) =
∫ ∞
−∞

ψ∗p (x) Ψ(x, t) dx.

Thus the two functions contain the same information.
But isn’t Ψ(x, t) still more special, since it satisfies a wave equation, the Schrödinger

equation? The answer is no: There exists a wave equation also for Φ(p, t). We can find
this equation by taking the derivative ih̄(∂/∂t)Φ(p, t) as our starting point: Using the last
formula above, we find that

ih̄
∂

∂t
Φ(p, t) =

∫ ∞
−∞

ψ∗p (x) ih̄
∂

∂t
Ψ(x, t) dx

(
ih̄
∂

∂t
Ψ =

[
p̂2
x/2m+ V (x)

]
Ψ

)

=
∫ ∞
−∞

ψ∗p (x)
[
p̂2
x/2m+ V (x)

]
︸ ︷︷ ︸

hermitesk

Ψ(x, t) dx

=
∫ ∞
−∞

([
p̂2
x/2m+

∑
n

vnx
n

]
ψp(x)

)∗
Ψ(x, t) dx

=
∫ ∞
−∞

([
p2/2m+

∑
n

vn

(
h̄

i

∂

∂p

)n]
ψp(x)

)∗
Ψ(x, t) dx.
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Here we have applied the identities

p̂xψp(x) = pψp(x) and xψp(x) =

(
h̄

i

∂

∂p

)
ψp(x).

In the last expression we can move the operator [ ]∗ to the left of the integral, because it
does not depend on x. We then have

· · · =

[
p2/2m+

∑
n

vn

(
− h̄
i

∂

∂p

)n] ∫ ∞
−∞

ψ∗p (x)Ψ(x, t)︸ ︷︷ ︸
Φ(p,t)

dx

=

[
p2/2m+ V̂

(
− h̄
i

∂

∂p

)]
Φ(p, t) ≡ ĤΦ(p, t). (T7.20)

This must be called a success: Φ(p, t) does satisfy a wave equation, and the form of this
equation allows us to call it a Schrödinger equation.

Thus we have two equivalent versions of quantum mechanics, the position-space for-
mulation and the momentum-space formulation. With the symbols x, y, z (or xi, i =
1, .., 3) for the cartesian coordinates, the situation can be summarized by the following table,
where we see that both wave functions satisfy the Schrödinger equation, with a Hamiltonian
given by the general formula

Ĥ(x̂i, p̂i) =
p̂2
x + p̂2

y + p̂2
z

2m
+ V̂ (x̂, ŷ, ẑ).

Position-space Momentum-space

formulation formulation

Wave function Ψ(x, y, z, t) Φ(px, py, pz, t)

Operator x̂i xi − h̄
i

∂

∂pi

Operator p̂i
h̄

i

∂

∂xi
pi

Wave equation ih̄
∂Ψ

∂t
= Ĥ(x̂i, p̂i)Ψ ih̄

∂Φ

∂t
= Ĥ(x̂i, p̂i)Φ

In Lecture Notes 10 we shall see that the momentum-space formulation of quantum
mechanics, as well as the original position-space formulation, are special cases of a more
general formulation.
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Example: Free particle

For a free particle (V = 0) we see that the Schrödinger equation in the momentum-space
formulation looks like this:

ih̄
∂Φ(p, t)

∂t
=

p2

2m
Φ(p, t) (p = px) .

Here, ∂/∂t means differentiation with p kept fixed. Then it is easy to see that the time-
dependent wave function in momentum space becomes

Φ(p, t) = Φ(p, 0) e−i(p
2/2m)t/h̄. (T7.21)

Here, φ(p, 0) is the momentum-space wave function at t = 0, which we are allowed to
prepare arbitrarily, but we assume that it is normalized:∫ ∞

−∞
|Φ(p, 0)|2dp = 1.

From the solution (T7.21) we see that the probability density in momentum space becomes
time independent for the free particle,

|Φ(p, t)|2 = |φ(p, 0)|2,

and this should not be surprising. The same should then be the case for all purely p-
dependent observables, like e.g.

〈 p 〉 =
∫ ∞
−∞

Φ∗(p, t) pΦ(p, t) dp =
∫ ∞
−∞

Φ∗(p, 0) pΦ(p, 0) dp = 〈 p 〉t=0 ,

〈 p2 〉, ∆p, etc. We can also find out how the expectation value of the position behaves: From
(T7.21) we have

〈x 〉t =
∫ ∞
−∞

Φ∗(p, t)
(
− h̄
i

∂

∂p

)
Φ(p, t) dp

=
∫ ∞
−∞

Φ∗(p, 0)ei(p
2/2m)t/h̄

[
− h̄
i

∂

∂p
Φ(p, 0)− Φ(p, 0)

h̄

i

∂

∂p

(
− ip

2t

2mh̄

)]
ei(p

2/2m)t/h̄ dp

=
∫ ∞
−∞

Φ∗(p, 0)

(
− h̄
i

∂

∂p

)
Φ(p, 0) dp+

t

m

∫ ∞
−∞

Φ∗(p, 0) pΦ(p, 0) dp

= 〈x 〉t=0 +
〈 p 〉
m

t.

Thus the expectation value 〈x 〉t is moving with constant velocity 〈 p 〉 /m, from 〈x 〉t=0 at
t = 0. This agrees with Newton’s first law.


