Department of physics, NTNU
TFY4340 Mesoscopic Physics
Spring 2010

Exercise 5
Assistance: Tuesday February 23.

In the lectures, we showed that the conduction band edge Fc(z), and hence the potential
energy V' (z) "seen” by the electrons, is to a good approximation linear near the AlGaAs-GaAs
interface in the socalled High Electron Mobility Transistor (HEMT):

V(z) = Fz

for z > 0, taking z = 0 precisely at the interface. Here, the constant F' has the dimension of a
force, and numerically, it will be of the order of 10 meV /nm, i.e., 107 eV /m, or about 1 pN.

If we ignore the fact that the conduction band offset between AlGaAs and GaAs is finite (2-300
meV), and also ignore the fact that V' (z) will flatten out when coming some ten nanometers or
so into GaAs, we may use the linear form for V' (z) for all positive z and set V' = oo for z < 0.
The problem can then be solved analytically, as showed in the lectures.

Here, we will use approximate methods to solve the problem: First, with a variational approach.
Second, with a numerical approach.

a) Based on knowledge about the ground state wave function ®y(z), "guess” the form
Do(2) = ze /2

and show that a variational calculation yields the ground state energy

min

By ="&" B(a) ~ 248 (n?/2m")"" F?/3,

b) Solve the Schrédinger equation numerically. In this case, you may just as well use a more
realistic shape of the conduction band edge in the vicinity of the interface. Put V' = oo at some
distance +7 "sufficiently” far away from the interface.

Below, a Matlab program is presented, which solves the Schrodinger equation numerically for
a 1D potential between Zmin and Zmax, for various potentials V'(z). It is based on discretizing
the kinetic energy operator, and diagonalizing the resulting matrix. The number of rows and
columns in this matrix equals the number of grid points.



% TFY4340 Mesoscopic physics, spring 2010. Exercise 5:

/» One-dimensional "triangular" confining potential in GaAs
% at AlGaAs-GaAs interface, giving rise to a 2DEG.

% Solved by straightforward matrix diagonalization, using
/» the Matlab function eig

% Let us use SI units until the matrix has been diagonalized:
hbar = 1.05%107(-34);
% Effective mass near conduction band minimum in GaAs:
mass = 0.067*9.1%x10"(-31);
% Slope of linear potential ("force"): 10 meV/nm = 1.6 pN
F = 1.6%x10"(-12);
% Number of grid points: 2*N+1
N = 500;
% Use step value dz of 1 Angstrom = 107(-10) m
/» The range of the potential is then from -50 nm to + 50 nm
% (Outside this range, V is set to infinity, so the wavefunction is zero
% for i=0 and i=2N+2)
dz = 107(-10);
fori=1:N
z(i) = dzx(-N-1+i);
% Smooth potential, 270 meV for large negative z, 300 meV at interface (z=0)
V(i) = 1.6%107(-22)*300%(0.9 + 0.1*xexp(-0.02*(N-1)));
% Try to multiply V(z<0) with e.g. 1000, and verify that the energy of the
% ground state is then slightly below 90 meV, as found analytically in the
% lectures.
end
for i = N+1 : 2xN+1
z(i) = dz*x(-N-1+i);
% Linear potential for positive z
V(i) = F*dz*x(-N-1+i);

% Comment: V(z) will in real life become flat at large positive z. However,
% the conduction band edge deep inside GaAs will be at about 600 or 700 meV,
% so we don’t bother to build in the flattening of V(z) here.

/» Diagonal elements of matrix

d = (1/dz"2)*hbar~2/mass + V;

% 0ff-diagonal elements

e = (-1/(2%dz"~2))*hbar~2/mass;

/» Setting up the tri-diagonal Hamiltonian matrix, first diagonal terms:
H = diag(d);

% Next, include off-diagonal elements:



H(2:(2%N+1),1:2*N) = diag(exones(1,2%N)) + H(2:(2*N+1),1:2%N);
H(1:2%N,2:2xN+1) = diag(exones(1,2xN)) + H(1:2*N,2:2*N+1);

’» Diagonalizing the matrix solves the Schrdinger equation.

% The command [S,D] = eig(H) produces matrices of eigenvalues (D) and
% eigenvectors (S) of matrix H, so that H*S = SxD. Matrix D is the
% canonical form of H - a diagonal matrix with H’s eigenvalues on

/» the main diagonal. Matrix S is the modal matrix - its columns are
/» the eigenvectors of H:

[S,D] = eig(H);

% An alternative in Matlab, which returns the 10 algebraically smallest
/» eigenvalues of the real and symmetric matrix H:

% [S,D] = eigs(H,10,’sa’);

% For descriptions, see:

% http://www.mathworks.com/access/helpdesk/help/techdoc/ref/eig.html
% http://www.mathworks.com/access/helpdesk/help/techdoc/ref/eigs.html
% We store the eigenvalues in the array "eigenvalues":

eigenvalues = diag(D);

% Print to screen the 5 lowest eigenvalues, in the unit meV:
[eigenvalues (1) eigenvalues(2) eigenvalues(3)

eigenvalues(4) eigenvalues(5)]/(1.6%107(-22))

% General syntax for plotting wavefunction nr n:

% plot(z,(S(:,n)’));

% Syntax for plotting absolute square of wavefunction nr n:

% plot(z,(S(:,n)’)."2);

% (use unit nm for z axis)

% Plot wavefunction for 5 lowest eigenvalues, including

% the potential V(z) (in units of 5000 meV, to be on the same

% scale as the wave functions)

figure;
plot(z*1079,V/(5000%1.6%10~(-22)) ,z*1079, (8(:,1)’),z*1079,(S(:,2)’),
z*1079, (8(:,8)’),2z*1079,(S(:,4)’),2z*1079, (8(:,5) ?));

axis([-50 50 -0.15 0.15]);

title(’First five eigenfunctions’);

xlabel(’z (nm)’);

% print -dpng triangular.png % will create png-file

% Make arrays for each of the 5 lowest eigenvalues (unit meV),

% simply to draw horizontal lines as function of z at these values:
el=eigenvalues(1)*ones(1,2*N+1)/(1.6%107(-22));
e2=eigenvalues(2)*ones(1,2*N+1)/(1.6%107(-22));
e3=eigenvalues(3)*ones(1,2*N+1)/(1.6%107(-22));
ed=eigenvalues(4)*ones(1,2*xN+1)/(1.6%107(-22));
eb=eigenvalues(5)*ones(1,2*N+1)/(1.6%107(-22));

% Plot of V(z) and the positions of the 5 lowest eigenvalues:
figure;

plot(zx1079,V/(1.6%107(-22)) ,z*1079,e1,2z*1079,e2,2%1079,e3,2z%¥1079,e4,z%1079,e5) ;



axis([-50 50 0 600])

title(’Potential and 5 lowest eigenvalues’);
xlabel(’z (nm)’);

ylabel (’Energy (meV)’);

%END OF PROGRAM



