
Department of physics, NTNU

TFY4340 Mesoscopic Physics

Spring 2010

Exercise 5

Assistance: Tuesday February 23.

In the lectures, we showed that the conduction band edge EC(z), and hence the potential
energy V (z) ”seen” by the electrons, is to a good approximation linear near the AlGaAs–GaAs
interface in the socalled High Electron Mobility Transistor (HEMT):

V (z) = Fz

for z > 0, taking z = 0 precisely at the interface. Here, the constant F has the dimension of a
force, and numerically, it will be of the order of 10 meV/nm, i.e., 107 eV/m, or about 1 pN.

If we ignore the fact that the conduction band offset between AlGaAs and GaAs is finite (2-300
meV), and also ignore the fact that V (z) will flatten out when coming some ten nanometers or
so into GaAs, we may use the linear form for V (z) for all positive z and set V = ∞ for z < 0.
The problem can then be solved analytically, as showed in the lectures.

Here, we will use approximate methods to solve the problem: First, with a variational approach.
Second, with a numerical approach.

a) Based on knowledge about the ground state wave function Φ0(z), ”guess” the form

Φ0(z) = z e−αz/2

and show that a variational calculation yields the ground state energy

E0 =
min

α E(α) ≃ 2.48
(

h̄2/2m∗

)1/3

F 2/3.

b) Solve the Schrödinger equation numerically. In this case, you may just as well use a more
realistic shape of the conduction band edge in the vicinity of the interface. Put V = ∞ at some
distance ±Z ”sufficiently” far away from the interface.

Below, a Matlab program is presented, which solves the Schrödinger equation numerically for
a 1D potential between Zmin and Zmax, for various potentials V (z). It is based on discretizing
the kinetic energy operator, and diagonalizing the resulting matrix. The number of rows and
columns in this matrix equals the number of grid points.
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% TFY4340 Mesoscopic physics, spring 2010. Exercise 5:

% One-dimensional "triangular" confining potential in GaAs

% at AlGaAs-GaAs interface, giving rise to a 2DEG.

% Solved by straightforward matrix diagonalization, using

% the Matlab function eig

%

% Let us use SI units until the matrix has been diagonalized:

hbar = 1.05*10^(-34);

% Effective mass near conduction band minimum in GaAs:

mass = 0.067*9.1*10^(-31);

% Slope of linear potential ("force"): 10 meV/nm = 1.6 pN

F = 1.6*10^(-12);

% Number of grid points: 2*N+1

N = 500;

% Use step value dz of 1 Angstrom = 10^(-10) m

% The range of the potential is then from -50 nm to + 50 nm

% (Outside this range, V is set to infinity, so the wavefunction is zero

% for i=0 and i=2N+2)

dz = 10^(-10);

for i = 1 : N

z(i) = dz*(-N-1+i);

% Smooth potential, 270 meV for large negative z, 300 meV at interface (z=0)

V(i) = 1.6*10^(-22)*300*(0.9 + 0.1*exp(-0.02*(N-i)));

% Try to multiply V(z<0) with e.g. 1000, and verify that the energy of the

% ground state is then slightly below 90 meV, as found analytically in the

% lectures.

end

for i = N+1 : 2*N+1

z(i) = dz*(-N-1+i);

% Linear potential for positive z

V(i) = F*dz*(-N-1+i);

end

%

% Comment: V(z) will in real life become flat at large positive z. However,

% the conduction band edge deep inside GaAs will be at about 600 or 700 meV,

% so we don’t bother to build in the flattening of V(z) here.

%

% Diagonal elements of matrix

d = (1/dz^2)*hbar^2/mass + V;

% Off-diagonal elements

e = (-1/(2*dz^2))*hbar^2/mass;

% Setting up the tri-diagonal Hamiltonian matrix, first diagonal terms:

H = diag(d);

% Next, include off-diagonal elements:
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H(2:(2*N+1),1:2*N) = diag(e*ones(1,2*N)) + H(2:(2*N+1),1:2*N);

H(1:2*N,2:2*N+1) = diag(e*ones(1,2*N)) + H(1:2*N,2:2*N+1);

% Diagonalizing the matrix solves the Schrdinger equation.

% The command [S,D] = eig(H) produces matrices of eigenvalues (D) and

% eigenvectors (S) of matrix H, so that H*S = S*D. Matrix D is the

% canonical form of H - a diagonal matrix with H’s eigenvalues on

% the main diagonal. Matrix S is the modal matrix - its columns are

% the eigenvectors of H:

[S,D] = eig(H);

% An alternative in Matlab, which returns the 10 algebraically smallest

% eigenvalues of the real and symmetric matrix H:

% [S,D] = eigs(H,10,’sa’);

% For descriptions, see:

% http://www.mathworks.com/access/helpdesk/help/techdoc/ref/eig.html

% http://www.mathworks.com/access/helpdesk/help/techdoc/ref/eigs.html

% We store the eigenvalues in the array "eigenvalues":

eigenvalues = diag(D);

% Print to screen the 5 lowest eigenvalues, in the unit meV:

[eigenvalues(1) eigenvalues(2) eigenvalues(3) ...

eigenvalues(4) eigenvalues(5)]/(1.6*10^(-22))

% General syntax for plotting wavefunction nr n:

% plot(z,(S(:,n)’));

% Syntax for plotting absolute square of wavefunction nr n:

% plot(z,(S(:,n)’).^2);

% (use unit nm for z axis)

% Plot wavefunction for 5 lowest eigenvalues, including

% the potential V(z) (in units of 5000 meV, to be on the same

% scale as the wave functions)

figure;

plot(z*10^9,V/(5000*1.6*10^(-22)),z*10^9,(S(:,1)’),z*10^9,(S(:,2)’), ...

z*10^9,(S(:,3)’),z*10^9,(S(:,4)’),z*10^9,(S(:,5)’));

axis([-50 50 -0.15 0.15]);

title(’First five eigenfunctions’);

xlabel(’z (nm)’);

% print -dpng triangular.png % will create png-file

% Make arrays for each of the 5 lowest eigenvalues (unit meV),

% simply to draw horizontal lines as function of z at these values:

e1=eigenvalues(1)*ones(1,2*N+1)/(1.6*10^(-22));

e2=eigenvalues(2)*ones(1,2*N+1)/(1.6*10^(-22));

e3=eigenvalues(3)*ones(1,2*N+1)/(1.6*10^(-22));

e4=eigenvalues(4)*ones(1,2*N+1)/(1.6*10^(-22));

e5=eigenvalues(5)*ones(1,2*N+1)/(1.6*10^(-22));

% Plot of V(z) and the positions of the 5 lowest eigenvalues:

figure;

plot(z*10^9,V/(1.6*10^(-22)),z*10^9,e1,z*10^9,e2,z*10^9,e3,z*10^9,e4,z*10^9,e5);
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axis([-50 50 0 600])

title(’Potential and 5 lowest eigenvalues’);

xlabel(’z (nm)’);

ylabel(’Energy (meV)’);

%END OF PROGRAM
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