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Solution to Exercise 1

Question 1

We use the given vector identity, with A = a2, B = a3, and C = a3 × a1:

V Ṽ = V | (b1 × b2) · b3|

= V
(

2π

V

)3

| ((a2 × a3) × (a3 × a1)) · (a1 × a2) |

= V
(

2π

V

)3

| ((a2 · (a3 × a1))a3 − (a3 · (a3 × a1))a2) · (a1 × a2) |

= V
(

2π

V

)3

|V a3 · (a1 × a2) |

= V
(

2π

V

)3

|V · V |

= (2π)3

Here, we used the fact that a3 · (a3 × a1) = 0.

Question 2

We have two primitive vectors in direct space, ai = (aix, aiy) (i = 1, 2), and two in reciprocal
space, bi = (bix, biy) (i = 1, 2), and four equations relating them, bi · aj = 2πδij (i, j = 1, 2).
These four equations are exactly what we need in order to determine the four unknowns bix, biy
(i = 1, 2). A little algebra yields

b1x =
2πa2y

a1xa2y − a1ya2x

b1y =
2πa2x

a1ya2x − a1xa2y

b2x =
2πa1y

a2xa1y − a2ya1x

b2y =
2πa1x

a2ya1x − a2xa1y

With a regular hexagonal lattice, with nearest neighbour distance a, we have

a1 = ax̂+ a cos(π/3)x̂− a sin(π/3)ŷ =
3a

2
x̂−

√
3a

2
ŷ

a2 = ax̂+ a cos(π/3)x̂+ a sin(π/3)ŷ =
3a

2
x̂+

√
3a

2
ŷ
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which yields

b1x =
2π

3a

b1y = − 2π√
3a

b2x =
2π

3a

b2y =
2π√
3a

In other words, the reciprocal lattice is triangular, with primitive lattice vectors

b1 =
2π

3a

(

x̂−
√

3ŷ
)

b2 =
2π

3a

(

x̂+
√

3ŷ
)

with magnitude |b1| = |b2| = b = 4π/3a. The first Brillouin zone is the area of k–space
around the lattice point K = 0 that is closer to the origin than to any other point of the
reciprocal lattice, i.e., the so–called Wigner–Seitz cell. With a triangular reciprocal lattice, the
1BZ becomes hexagonal:

b 1

b 2

K=0

1BZ of graphene

y

x

The area of the primitive cell in direct space is

A = |a1 × a2| = |a1xa2y − a1ya2x| =
3
√

3a2

2
,

and the corresponding area in reciprocal space is

Ã = |b1 × b2| = |b1xb2y − b1yb2x| =
8π2

3
√

3a2
.

The product of these two is AÃ = 4π2, as it should be.
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Question 3

Solution of the Schrödinger equation (SE) in 2D, with periodic boundary conditions (PBC),
yields plane–wave solutions

ψ(x, y) ∼ eik·r

with allowed values of the wave vector,

k = kxx̂+ kyŷ =
2π

L
(n1x̂+ n2ŷ) .

Hence, there is 1 allowed value of k in an area (2π/L)2 in k–space, and, because of spin
degeneracy gs = 2, there are 2 allowed states within this k–space area. As in 3D, the DOS in
k–space is constant,

D2(k) =
2

(2π/L)2
=

A

2π2
.

The number of states with absolute value of the wave vector smaller than a given k is

N2(k) = πk2 · A

2π2
=
Ak2

2π
,

and since E(k) = h̄2k2/2m, i.e., k =
√

2mE/h̄2, the number of states with energy less than E
is

N2(E) =
A

2π
· 2mE

h̄2
=
mA

πh̄2
E.

Therefore, the 2D DOS is

D2(E) =
dN2

dE
=
mA

πh̄2
,

a constant, independent of the energy.

In 1D, a similar way of reasoning yields

D1(k) =
2

2π/L
=
L

π

N1(k) = 2k · L
π

=
2Lk

π

N1(E) =
2L

π
·
√

2mE/h̄2 =
2L

√
2m

πh̄

√
E

D1(E) =
dN1

dE
=
L
√

2m

πh̄
E−1/2

To sum up: The dimensionality of the system determines the energy dependence of the DOS.
A qualitative sketch of the DOS in 1, 2, and 3 dimensions is given in the figure below:
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