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Solution to Exercise 1

Question 1

We use the given vector identity, with A = ay, B = a3, and C = a3 X a1:

VvV = V‘(b1><b2>b3‘

) | ((@s X as) x (a5 x 1)) - (@1 X as)]|

| (a2 - (a3 x a1)) a3 — (a3 - (a3 X a1)) az) - (a; X ay) |

Here, we used the fact that a3 - (a3 x a1) = 0.

Question 2

We have two primitive vectors in direct space, a; = (a;z, a;y) (i = 1,2), and two in reciprocal
space, b; = (biz, biy) (i = 1,2), and four equations relating them, b; - a; = 27d;; (1,5 = 1,2).
These four equations are exactly what we need in order to determine the four unknowns b;,, b;,
(i =1,2). A little algebra yields

b B 2mag,
lz —
alxa2y - alya2x
27ra2x
by, =
A1yQ2y — Q1202
b B 2mayy,
20 —
a2:va1y - a2ya1x
27ra1x
by =

A2y A1y — U221y

With a regular hexagonal lattice, with nearest neighbour distance a, we have
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which yields
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In other words, the reciprocal lattice is triangular, with primitive lattice vectors
27 /. R

2 /. .
with magnitude |by| = |by] = b = 47/3a. The first Brillouin zone is the area of k-space
around the lattice point K = 0 that is closer to the origin than to any other point of the
reciprocal lattice, i.e., the so—called Wigner—Seitz cell. With a triangular reciprocal lattice, the
1BZ becomes hexagonal:

The area of the primitive cell in direct space is

3v/3a2

A= |a,1 X a,2| = ‘ala:a2y - alyCLZ:B‘ = 5

and the corresponding area in reciprocal space is

A= [by % byl = [bisba, — by = %
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The product of these two is AA = 472, as it should be.



Question 3

Solution of the Schrédinger equation (SE) in 2D, with periodic boundary conditions (PBC),
yields plane-wave solutions

Ui, y) ~ P

with allowed values of the wave vector,
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Hence, there is 1 allowed value of k in an area (27/L)? in k-space, and, because of spin
degeneracy g, = 2, there are 2 allowed states within this k—space area. As in 3D, the DOS in

k—space is constant,
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The number of states with absolute value of the wave vector smaller than a given k is
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and since E(k) = h*k?/2m, i.e., k = \/2mE/h?, the number of states with energy less than F

is
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Therefore, the 2D DOS is
dNQ mA
Dy(E)=—=—
2\B) =5 =
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In 1D, a similar way of reasoning yields
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To sum up: The dimensionality of the system determines the energy dependence of the DOS.
A qualitative sketch of the DOS in 1, 2, and 3 dimensions is given in the figure below:
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