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a) Kirchhoff’s voltage law for the left loop (counting potential changes, going clockwise):

−
V

2
+

Q1

C1
+

Qg

Cg

− U = 0. (1)

For the right loop (also going clockwise):

U −
Qg

Cg

+
Q2

C2

−
V

2
= 0. (2)

For the outer loop (also going clockwise):

−V +
Q1

C1
+

Q2

C2
= 0. (3)

The last equation is nothing but the sum of the first two equations, and brings nothing new.
However, we will use it below. The island charge is

q = Q1 − Q2 − Qg. (4)

So, we have 3 independent equations for the 3 unknown charges Q1, Q2, and Qg. Multiplication
of (1) by C1 and (2) by C2 yields

Q1 − Q2 = (C1 + C2)U +
1

2
(C1 − C2)V −

C1 + C2

Cg

Qg

(4)
= q + Qg,

which may be solved for Qg:

Qg =
Cg

CΣ

{

1

2
(C1 − C2) V + (C1 + C2) U − q

}

. (5)

Next, (4) + C2 multiplied by (3) gives us

C1 + C2

C1
Q1 = C2V + q + Qg,

whereby insertion of the result for Qg and solution with respect to Q1 yields

Q1 =
C1

CΣ

{(

C2 +
1

2
Cg

)

V + CgU + q
}

. (6)

Finally, (4) yields

Q2 =
C2

CΣ

{(

C1 +
1

2
Cg

)

V − CgU − q
}

. (7)
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b) In this question, we will try to find out how many extra electrons n will be on the island for
given gate and bias voltages U and ±V/2, respectively. (And for a given set of capacitances, of
course.) The strategy will be the same as the one used in the lectures: Determine the energy
change dE of the system when the island charge changes by an amount dq. Integration of the
resulting equation will give us E(q), i.e., E(n), and we may discuss whether tunneling of an
additional electron into or out of the island is favorable or not.

The electrostatic energy stored in the three capacitors is

Eel =
Q2

1

2C1

+
Q2

2

2C2

+
Q2

g

2Cg

= . . . tedious algebra . . .

=
q2

2CΣ
+ q − independent terms (8)

Thus, the contribution from Eel to the total energy change dE, when q → q + dq, is

dEel =
q dq

CΣ
. (9)

To this, we must add the work done by the island on the voltage sources U and ±V/2. Let us
consider dq = −e due to tunneling of an electron into the island through tunneling junction
1. First of all, there is a contribution (−dq)(−V/2) = dqV/2 since a charge −dq must be
transported to the voltage source −V/2 (from ground), in order to compensate for the charge
dq that has tunneled through junction 1. After this tunneling event, equilibrium is restored by
an adjustment of the capacitor charges (on the island side):

Q1 → Q1 + dQ1 , −Q2 → −(Q2 + dQ2) , −Qg → −(Qg + dQg).

On the outer side of each capacitor, this is compensated by charges −dQ1, +dQ2, and +dQg

flowing from voltage sources to the capacitor plates. The resulting work is

dW1 = −
V

2
(dQ1 − dq) + U · (−dQg) +

V

2
· (−dQ2) . (10)

From a) we have (with constant V and U)

dQ1 =
C1

CΣ
dq , dQ2 = −

C2

CΣ
dq , dQg = −

Cg

CΣ
dq.

Hence, the total energy change is

dE1 = dEel + dW1

=
dq

CΣ

{

q +
(

C2 +
Cg

2

)

V + CgU
}

(11)

Integration on both sides, and insertion of q = −ne, yields

E1(n) =
1

2CΣ

{(

C2 +
Cg

2

)

V + CgU − ne
}2

, (12)
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plus some n–independent terms.
This is the energy given in the text (as Eeq).

c) Next, we want to calculate the energy change resulting from one additional electron tunneling
through either of the two junctions, onto or out of the island. We start by looking at tunneling
through junction 1, and onto the island (i.e., n → n+1). We will eventually look at the special
case with C1 = C2 = Cg = C, but let us first do the derivations with arbitrary capacitances:

∆E+
1 = E1(n + 1) − E1(n)

= . . .

=
e

CΣ

{

ne +
e

2
−

(

C2 +
Cg

2

)

V − CgU
}

(13)

Similarly, for tunneling of an electron through junction 1 out of the island:

∆E−

1 = E1(n − 1) − E1(n)

= . . .

=
e

CΣ

{

−ne +
e

2
+

(

C2 +
Cg

2

)

V + CgU
}

(14)

The condition for stability against tunneling – one or the other way – through junction 1 is
therefore (by requiring ∆E+

1 > 0 and ∆E−

1 > 0)

−
e

2
<

(

C2 +
Cg

2

)

V + CgU − ne <
e

2
. (15)

For tunneling through junction 2, we may repeat all these steps and finally arrive at the following
condition for stability against tunneling – one or the other way – through junction 2:

−
e

2
< −

(

C1 +
Cg

2

)

V + CgU − ne <
e

2
. (16)

Now, we may specialize to equal capacitors, C1 = C2 = Cg = C, which means that CΣ = 3C.
The two stability criteria (15) and (16) then become
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2
<
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1

2
(15′)
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1

2
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1

2
(16′)

These represent 4 inequalities for a given value of n, e.g., for n = 0:
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Hence, the stable region for n = 0 in the CU/e – CV/e plane is a ”diamond” centered at the
origin, with corners in (0,±1/3) and (±1/2, 0). The full stability diagram becomes like this:

1 2 3−1−2−3

1/3

−1/3

CV/e

CU/e
A B

unstable region

unstable region

Here, the ”fish shell” pattern is the n = 0 stability region, the vertically striped pattern is the
n = 1 stability region, and the horizontally striped pattern is the n = −1 stability region.

Assume V is a positive bias, taking us (verically) to the level of the A–B line in the figure. This
sign on V will tend to push electrons clockwise in our transistor circuit. An AC gate voltage
U(t) = U0 + U1 cos(2πft) with positive U0 will represent oscillations along the line between A
and B. Assume e.g. U1 > 0. Then, increasing U from U0 − U1 (in A) to U0 + U1 (in B) allows
for the tunneling of one electron onto the island (n = 2 → n = 3), through junction 1. On the
next half period, U is decreasing, from U0 + U1 in B to U0 − U1 in A. This results in tunneling
of one electron out of the island (n = 3 → n = 2), through junction 2. The net result is a DC
current I = ef , proportional to the frequency of the gate voltage U .

Note that the accuracy in the current I will be the same as the accuracy in the frequency
f . And frequencies can be created/measured with high accuracy! Thus, this single electron
transistor can produce a current with high accuracy.
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