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Solution to Exercise 3

Question 1

We have the band structure
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for the 2D triangular lattice in the single–band nn TB model. We expand E around the Γ–point
to second order in k, using cos α ≃ 1 − α2/2 for α ≪ 1:
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Hence, the inverse effective mass tensor is diagonal and isotropic, i.e., with both diagonal
elements equal to

1/m∗ =
3|γ|a2

h̄2

since we had assumed γ < 0. Anisotropy would require different coefficients in front of k2

x and
k2

y. A non–diagonal inverse effective mass tensor would require a term in E proportional with
kxky.

Question 2

a) We take the hints given in the text and expand E to lowest order in deviations from kK :
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The expression under the square root becomes, to second order in εx and εy,
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Here, ∆k = k − kK = (εxx̂ + εyŷ)/a. Hence,

E± ≃ ±3

2
|γ|a∆k,

and the constant is C = 3|γ|a/2.

b) As in Exercise 1, Question 3, we have a constant density of states in 2D,

D2(k) =
A

2π2
,

which means that the number of states with |k − kK | less than a given ∆k is

N2(∆k) = π(∆k)2 · D2 =
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.

With the linear dispersion found in a), we have
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c) Photons are massless particles, so the energy–momentum relation for photons is simply
E = pc. For electrons in a crystal, we know that the wavenumber, measured relative to the
energy band minimum, and multiplied by h̄, is the crystal momentum. More precisely,

p = h̄∆k,

so we may write for the graphene electrons at the Fermi level, near the conduction band
minimum,

E =
3

2
|γ|a∆k = vF p,

with Fermi velocity

vF =
3|γ|a
2h̄

.

The nearest neighbour distance in graphene is a ≃ 1.4 Å, so if γ ∼ 3 eV, the velocity of the
electrons is

vF ∼ 3 · 3 · 1.6 · 10−19 · 1.4 · 10−10

2 · 1.05 · 10−34
≃ 106 m/s.
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