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Solution to Exercise 7

a) Division of the SE with fwy/2 yields

Ry
mwq dy? h

y}d):w-

Substitutions y? = h&? /mwy and dy* = hd&?/mwy turns the equation into the one given in the
exercise.

b) Let’s start by writing down the SE:

h? ieA\? 1, .,
With V = 20/0x + y0/0y, A = —yBz, and ¢ = exp(ikz)¢p,(y), the SE becomes
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We note that
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Thus, if we divide the SE with this factor, we obtain
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On the left hand side, the first term is (k — n)* = (n — k)?, since k = kig and n = y/lp =
ylg/1% = ylgeB/h. The second term is obviously 9%/0n?. The third term is
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Consequently, the equation for ¢, (n) is
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¢) We write the two terms inside the brackets as
(n—r)?+a’n® = (1+a*)n* - 2kn+ K
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Hence, the equation for ¢,(n) can be written
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Comparison with the dimensionless equation in a) shows that this is an equation for a 1D
harmonic oscillator, centered at 1, = k/(1 + o?), and with a redefined energy eigenvalue ¢ —
2k?/(1 + o). In addition, the factor 1 + o? = 1 + wi/w? = Q% /w? in front of the quadratic
term on the left hand side means that this equation comes from a harmonic oscillator equation
where the potential energy is not mw?y?/2, but rather mQ?y?/2. Hence, we know that the
dimensionless energy on the right hand side actually equals (n + 1/2)hQ/(1/2)hw..
Now, we are ready to transform back to original variables. First, the center position of the
harmonic oscillator wave functions:
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Next, the energy spectrum:
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Therefore,
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The presence of the confining potential V'(y) has turned the Landau levels into ” Landau bands”:
Electrons at the Fermi level distribute their energy Er between discrete levels (n+1/2)h$2 and
a continuous ”free particle like” part h*k?/2Mp, suggesting electron transport along the 1D
channel.
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d) Since A has no y—component and the functions ¢, (y — L%k) are real, we have j, = 0. The
r—component, however, is not zero:
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We see that j, > 0 if y < I%k and j, > 0 if y > [%k.

e) The total probability current along the channel is

L= [ dyjey) = we [ dy(ik = )62y — L),
We take the hint given in the exercise and use the property
Only — LK) = &7, (Lk — ),

which must be true, since the harmonic oscillator functions have a certain parity, either ¢, (x) =
¢On(—x) or ¢p(z) = —¢,(—x). Hence, if we rewrite I, slightly,

L= w. [ dy[~(y = Lk) = (L — (k] 62y — Lih).

we see that the first term gives an odd integrand which integrates to zero, whereas the second
term is simply the constant —w.(L% — %)k multiplied by the normalization integral

[ayeity—L3k) =1.
Hence, the total probability current is
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Limiting cases:
1. I(wg—0)=0

2. I(w, — 0) =1k

m

These limits are both quite reasonable: When wg — 0, we have an infinite 2DEG, without
any borders, and the electrons are simply spinning around without getting anywhere. In other
words, I, = 0. When w. — 0, the magnetic field is turned off, and we simply have electrons
moving along the 1D channel with velocity v, = hk/m.



