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Solution to Exercise 7

a) Division of the SE with h̄ω0/2 yields

[

−
h̄

mω0

d2

dy2
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]

φ = εφ.

Substitutions y2 = h̄ξ2/mω0 and dy2 = h̄dξ2/mω0 turns the equation into the one given in the
exercise.

b) Let’s start by writing down the SE:
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With ∇ = x̂∂/∂x + ŷ∂/∂y, A = −yBx̂, and ψ = exp(ikx)φn(y), the SE becomes
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φn(y) = Eφn(y).

We note that
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Thus, if we divide the SE with this factor, we obtain
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φn(y) = εφn(y).

On the left hand side, the first term is (κ − η)2 = (η − κ)2, since κ = klB and η = y/lB =
ylB/l

2

B = ylBeB/h̄. The second term is obviously ∂2/∂η2. The third term is
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η2 = α2η2.

Consequently, the equation for φn(η) is

[
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φn(η) = εφn(η).
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c) We write the two terms inside the brackets as

(η − κ)2 + α2η2 = (1 + α2)η2
− 2κη + κ2
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Hence, the equation for φn(η) can be written
[
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(

ε−
α2κ2

1 + α2

)

φn(η).

Comparison with the dimensionless equation in a) shows that this is an equation for a 1D
harmonic oscillator, centered at ηc = κ/(1 + α2), and with a redefined energy eigenvalue ε −
α2κ2/(1 + α2). In addition, the factor 1 + α2 = 1 + ω2

0
/ω2

c = Ω2/ω2

c in front of the quadratic
term on the left hand side means that this equation comes from a harmonic oscillator equation
where the potential energy is not mω2

cy
2/2, but rather mΩ2y2/2. Hence, we know that the

dimensionless energy on the right hand side actually equals (n+ 1/2)h̄Ω/(1/2)h̄ωc.
Now, we are ready to transform back to original variables. First, the center position of the
harmonic oscillator wave functions:
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2
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Next, the energy spectrum:
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Therefore,
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2
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.

The presence of the confining potential V (y) has turned the Landau levels into ”Landau bands”:
Electrons at the Fermi level distribute their energy EF between discrete levels (n+1/2)h̄Ω and
a continuous ”free particle like” part h̄2k2/2MB, suggesting electron transport along the 1D
channel.

d) Since A has no y–component and the functions φn(y − L2

Bk) are real, we have jy = 0. The
x–component, however, is not zero:
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We see that jx > 0 if y < l2Bk and jx > 0 if y > l2Bk.

e) The total probability current along the channel is

Ix =
∫

dyjx(y) = ωc

∫

dy(l2Bk − y)φ2

n(y − L2

Bk).

We take the hint given in the exercise and use the property

φ2
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Bk) = φ2
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Bk − y),

which must be true, since the harmonic oscillator functions have a certain parity, either φn(x) =
φn(−x) or φn(x) = −φn(−x). Hence, if we rewrite Ix slightly,
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we see that the first term gives an odd integrand which integrates to zero, whereas the second
term is simply the constant −ωc(L

2

B − l2B)k multiplied by the normalization integral

∫
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Hence, the total probability current is
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.

Limiting cases:

1. Ix(ω0 → 0) = 0

2. Ix(ωc → 0) = h̄k
m

These limits are both quite reasonable: When ω0 → 0, we have an infinite 2DEG, without
any borders, and the electrons are simply spinning around without getting anywhere. In other
words, Ix = 0. When ωc → 0, the magnetic field is turned off, and we simply have electrons
moving along the 1D channel with velocity vx = h̄k/m.
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