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Solution to Exercise 8

a) From the Büttiker–Landauer formula (first equation in the exercise), we have diagonal ele-
ments

Γαα =
2e2

h

∑

β 6=α

Tβα

and off–diagonal elements

Γαβ = −
2e2

h
Tαβ .

From the symmetry relation Tαβ(B) = Tβα(−B), we have directly for the off–diagonal matrix
elements

Γαβ(B) = Γβα(−B).

Combination of the equilibrium condition and Onsager symmetry yields

∑

β 6=α

Tβα(B) =
∑

β 6=α

Tαβ(B) =
∑

β 6=α

Tβα(−B),

and hence
Γαα(B) = Γαα(−B).

b) We write out the equations (with V3 = 0):

I1 =
2e2

h







∑

β 6=1

Tβ1V1 − T12V2 − T14V4







I2 =
2e2

h







∑

β 6=2

Tβ2V2 − T21V1 − T24V4







I3 = −I1 =
2e2

h
{−T31V1 − T32V2 − T34V4}

I4 = −I2 =
2e2

h







∑

β 6=4

Tβ4V4 − T41V1 − T42V2







Pairwise summation of eqn 1 and 3, respectively eqn 2 and 4, yields

0 = (T21 + T41)V1 − (T12 + T32)V2 − (T14 + T34)V4

0 = −(T21 + T41)V1 + (T12 + T32)V2 + (T14 + T34)V4

which are identical equations. This shows that we had only 3, and not 4, independent equations
for the 3 voltages V1, V2, and V4 (for given currents I1 and I2).
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Here, we need the currents in terms of the difference d = V2−V4, whereas we are not interested
in the sum s = V2 + V4. Therefore, we rewrite the last equation,

0 = −(T21 + T41)V1 + (T12 + T32)(s + d)/2 + (T14 + T34)(s − d)/2

= −(T21 + T41)V1 + (T12 + T32 + T14 + T34)s/2 + (T12 + T32 − T14 − T34)d/2

where we have used V2 = (s + d)/2 and V4 = (s − d)/2. From this equation, we can express s
in terms of V1, d, and Tαβ :

s =
1

τ
{2(T21 + T41)V1 + (T14 + T34 − T12 − T32)d} ,

with
τ = T12 + T32 + T14 + T34.

Clearly, τ will enter the elements of the matrix γ, so let us study the symmetry properties of
τ first. We may write (using

∑

β 6=α Tβα =
∑

β 6=α Tαβ)

τ =
∑

β 6=2

Tβ2 − T42 +
∑

β 6=4

Tβ4 − T24

=
∑

β 6=2

T2β − T42 +
∑

β 6=4

T4β − T24

= T21 + T23 + T41 + T43.

These two expressions for τ , together with Onsager symmetry (Tαβ(B) = Tβα(−B)), show that

τ(B) = τ(−B).

What remains now is to write the equations for I1 and I2 in terms of V1, s, and d, and eliminate
s with the expression found above.
We start with I1:

I1 =
2e2

h







∑

β 6=1

Tβ1V1 −
s

2
(T12 + T14) −

d

2
(T12 − T14)







=
2e2

h







∑

β 6=1

Tβ1 −
(T21 + T41)(T12 + T14)

τ







V1

+
2e2

h

{

−
T14 + T34 − T12 − T32

2τ
· (T12 + T14) −

1

2
(T12 − T14)

}

d

Hence, the (1, 1)–element is

γ11 =
2e2

hτ







τ
∑

β 6=1

Tβ1 − (T21 + T41)(T12 + T14)







,

and it is clear that
γ11(B) = γ11(−B).
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The first sum is symmetric in B, and the second term is a product of two sums, where a change
of sign in B turns one sum into the other, and vice versa.
The (1, 2)–element is

γ12 = −
e2

hτ
{(T14 + T34 − T12 − T32) (T12 + T14) + (T14 + T34 + T12 + T32) (T12 − T14)}

= −
e2

hτ
{2 (T14 + T34) T12 − 2 (T12 + T32)T14}

=
2e2

hτ
{T32T14 − T34T12}

Similarly, for I2:

I2 =
2e2

h







∑

β 6=2

Tβ2V2 − T21V1 − T24V4







=
2e2

h

{

(T12 + T32 + T42) ·
1

2
(s + d) − T21V1 − T24 ·

1

2
(s − d)

}

=
2e2

h

{

−T21 +
1

τ
(T21 + T41) (T12 + T32 + T42 − T24)

}

V1

+
2e2

h

{

1

2τ
(T12 + T32 + T42 − T24) (T14 + T34 − T12 − T32) +

1

2
(T12 + T32 + T42 + T24)

}

d

Hence, the (2, 2)–element is (where we use the expression for τ found earlier)

γ22 =
e2

hτ
{(T12 + T32 + T42 − T24) (T14 + T34 − T12 − T32)}

+
e2

hτ
{(T12 + T32 + T42 + T24) (T14 + T34 + T12 + T32)}

=
e2

hτ
{2 (T12 + T32 + T42) (T14 + T34) + 2T24 (T12 + T32)}

=
2e2

hτ
{(T14 + T24 + T34) (T12 + T32) + T42 (T14 + T34)}

=
2e2

hτ







τ
∑

β 6=4

Tβ4 + T42 (T14 + T34) − (T14 + T34) (T14 + T24 + T34)







=
2e2

hτ







τ
∑

β 6=4

Tβ4 − (T41 + T43) (T14 + T34)







This expression will be unchanged if we invert the direction of the magnetic field, hence γ22(B) =
γ22(−B).
Finally, the (2, 1)–element is

γ21 =
2e2

hτ
{−T21 (T12 + T32 + T14 + T34) + (T21 + T41) (T12 + T32 + T42 − T24)}

=
2e2

hτ
{−T21T14 − T21T34 + T21T42 − T21T24 + T41T12 + T41T32 + T41T42 − T41T24}

= . . . =
2e2

hτ
{T23T41 − T43T21}
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Now, since Tαβ(B) = Tβα(−B), and τ(B) = τ(−B), we see that

γ12(B) = γ21(−B).

In conclusion, the 2 × 2 matrix γ has the property

γ(B) = γ
T (−B).

c) The condition I2 = 0 yields

V1 = −
γ22

γ21

(V2 − V4) ,

and

I1 =

(

−γ11

γ22

γ21

+ γ12

)

(V2 − V4) ,

i.e.,

R13,24 = −
γ21

γ11γ22 − γ12γ21

.

Similarly, the condition I1 = 0 yields

V2 − V4 = −
γ11

γ12

V1,

and

I2 =

(

γ21 −
γ11

γ12

γ22

)

V1,

i.e.,

R24,13 = −
γ12

γ11γ22 − γ12γ21

.

Since γ12(−B) = γ21(B), we see immediately that

R13,24(B) = R24,13(−B).

Note that these 4–point resistances may have both signs. This is nothing more strange than
the fact that Hall voltages may have both signs. Of course, the dissipation is always positive.
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