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Solution to Exercise 9

a) If the number of (occupied!) edge states equals N , the Fermi energy EF must be somewhere
between (N − 1/2)h̄ωc and (N + 1/2)h̄ωc. If N is much larger than 1, we may ignore the zero
point energy, and

N ≃
EF

h̄ωc

.

b) According to Büttiker and Landauer,

Iα =
∑

β 6=α

Gαβ (Vα − Vβ) ,

with conductances

Gαβ =
2e2

h
Tαβ.

Here, Tαβ is the ”transmissivity” from terminal β to terminal α. Let us e.g. assume that the
magnetic field B is pointing out of the plane. Then, electrons will be deflected to the left, so
that edge states propagating from left to right are created near the upper edge of the channel,
and edge states propagating from right to left are created near the lower edge of the channel.
All the N edge states entering the system at the upper edge in terminal 1 will follow the upper
edge and be transmitted into terminal 2. Hence, T21 = N . Only n of the N states that enter
the system at the right edge of terminal 2 are transmitted through the constriction and end
up in terminal 4. The remaining N − n states continue along the lower edge and finally end
up in terminal 1. Hence, T42 = n and T12 = N − n. Similar arguments further yield T34 = N ,
T13 = n, and T43 = N − n. The remaining six Tαβ are all zero. The figure below illustrates
this, for N = 4 and n = 2.
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Note that away from the narrow constriction, electron transport takes place via edge states,
where the number of states N are determined by the magnetic field B. However, inside the
constriction, electrons propagate via transverse modes, where the number of states n are de-
termined by the geometry, i.e., the width w of the constriction.
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Based on these considerations, we obtain the following equations relating currents and poten-
tials:

I1 =
2e2

h
{(N − n) (V1 − V2) + n (V1 − V3)}

=
2e2

h
{NV1 − (N − n)V1 − nV3}

I2 =
2e2

h
{N (V2 − V1)} =

2e2

h
{−NV1 + NV2}

I3 =
2e2

h
{N (V3 − V4)} =

2e2

h
{NV3 − NV4}

I4 =
2e2

h
{n (V4 − V2) + (N − n) (V4 − V3)}

=
2e2

h
{−nV2 − (N − n) V3 + NV4}

As suggested, we choose V3 = 0. The longitudinal 4–terminal resistance RL is found by mea-
suring the voltage V2 − V4 when a current I1 = −I3 is established (with an applied voltage
V1 −V3 = V1). In other words, terminals 2 and 4 are voltage probes, with zero net current, i.e.,
I2 = I4 = 0. Zero current in terminal 2 yields V2 = V1, and zero current in terminal 4 yields
V4 = nV2/N = nV1/N . Hence,

RL = R13,24 =
V2 − V4

I1

=
h

2e2

V1 (1 − n/N)

V1 (N − N + n)
=

h

2e2

N − n

Nn
=

h

2e2

(

1

n
−

1

N

)

.

c) As already discussed above, the number of transmitted modes n is determined by the con-
striction width w for a given value of the Fermi energy EF . As long as the magnetic length
lB is larger then w, n will be independent of the magnetic field. On the other hand, the
number of edge states N in the wide region equals the number of occupied Landau levels,
N ≃ EF /h̄ωc = EFm/e|B|. Hence,

RL(B) =
h

2e2

(

1

n
−

e|B|

mEF

)

.

This result predicts a maximum value of RL for B = 0, and a linear dependence on |B|,
in agreement with the experimental results reported in figure 50 in Beenakker/van Houten.
(Again: For ”moderate” values of B!)

d) The 2–terminal resistance is

R2t = R13,13 =
V1 − V3

I1

=
h

2e2

V1

nV1

=
h

2e2

1

n
.

This is as expected: There are n ”open channels” through the constriction between terminals
1 and 3.
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