Oscillator damped by a constant-magnitude friction force

Avi Marchewka?®
Department of Physics, North Carolina State University, Raleigh, North Carolina 27695-8202

David S. Abbott”
Dartmouth College, New Hanover, New Hampshire 03755

Robert J. Beichner®
Department of Physics, North Carolina State University, Raleigh, North Carolina 27695-8202

(Received 27 February 2003; accepted 15 September) 2003

Although a simple spring/mass system damped by a friction force of constant magnitude shares
many of the characteristics of the simple and damped harmonic oscillators, its solution is not
presented in most texts. Closed form solutions for the turning and stopping points can be found
using an energy-based approach. A dynamical approach leads to a closed form solution for the
position of the mass as a function of time. The main result is that the amplitude of the oscillator
damped by a constant magnitude friction force decreases by a constant amount each swing and the
motion dies out after a finite time. We present these two solutions and suggest ways that the system
can be used in the classroom. 04 American Association of Physics Teachers.
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[. INTRODUCTION system includes widely applicable physics and shares many
of the characteristics of more commonly studied oscillators.
Introductory courses in physics strive to teach students télowever, as we will show, the motion of the system is
think physically and become better problem solvers. Interacunique in several key ways and may provide insight into the
tive studio physics classes have been shown to improve stalynamics of real damped systems. In the following we
dents’ conceptual understanding and problem-solvingresent two general solutions for the oscillator damped by a
ability.1~3In such classes, students typically work together toconstant magnitude force and suggest ways that the problem
solve carefully constructed problems. These problems rangaight be used in the physics classroom.
from conceptual exercises like those presented in Ref. 4 to
context-rich quantitative problemisSome studio classes also
integrate computers into the curriculum. In the SCALE2UP ||. THE MODEL SYSTEM
classroom at North Carolina State University, students use
computer tools such dsteractive PhysicsandVPythof to A block of massm attached to a spring of strength
model the behavior of physical systems and to bridge the gagoves on a rough horizontal surface with friction coeffi-
between graphical, symbolic, and visual representationsients,us=u,. The block is released from rest. For conve-
This article focuses on a problem studied in the SCALE-URience, the origin of the coordinates is chosen so that the
classroom that can be used to improve students’ problenspring has minimum potential energy at the origin. A cursory
solving and computer modeling skills. look at the system strongly suggests that the mass will even-
The physical system is easy to describe: a block resting otually stop moving, but it is not immediately clear whear
a rough horizontal surface is attached to a stretched springhere this will happen. Indeed, students in our classes asked
and released. Figure 1 shows how the problem was presentethny of the salient questions: When will the motion stop?
to the students at the beginning of the simple harmonic moHow far will the mass travel before it stops? How many
tion unit. The question was intended as a simple applicatiotimes will the mass go back and forth? Whéat what po-
of the work-energy theorem. However, the studdatsd in-  sition) will the mass stop? These questions cannot be an-
structor$ quickly discovered that the addition of a constantswered in one or two steps. The answers depend on how far
frictional force made the system considerably richer than eithe block is from the origin when it is released. If the block
ther had imagined. Although the spring/mass system often istarts very close to the origin, the block will not move at all.
presented in the context of simple harmonic oscillators, thétart a little further from the origin, and the block will break
spring/mass system damped by a force of constant magniree and slide, but may not be able to move again when it
tude is rarely studied. Because the problem is not presentembmes to rest at the far end of its motion.
in any readily available textstudents cannot use a formula
matching approach or mimic a textbook solution.
The system can be solved analytically, but the solution igll. ENERGY-LIKE METHODS: AN ALGEBRAIC
not easy. Students must start from first principles, reasopNALYSIS
qualitatively to plan a solution strategy, and then check the
qualitative behavior of the result. The system has few com- Before diving into the details, the problem solver must
ponents, so it can be easily simulated. Using the computemap a strategy for solving the problem based on fundamental
students can check their hunches about the system’s behaviehysics concept® The qualitative analysis offered in the
or perform controlled simulations to explore the effect of previous paragraph suggests one strategy for solving this
changing system parameters. Because the system is closgdyoblem. Figure 2 shows a flowchart for an iterative solution
related to the simple and damped harmonic oscillators, themploying the principle of energy conservation. Heuristics
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Before continuing, a few words about Eg) are in order.

i s {-------r-Energyy oo Velocityof- Mass - - - - - Although Eq.(1) is sometimes called the work-energy theo-

| B A ;W) oo | rem, this name is somewhat misleading. If parts of an ex-

I S l,T,°!?',E,L,,?,5;'1,,,,,,,L 77777 Pdsition of Mass ___ | L tended body move relative to the center of mass, the integral
x| 10m ! on the left-hand side of Ed1) is not equal to the total work

! ! ! ! ! ‘ ! ! done on the body. Likewise, the kinetic energy-like term on
S S S S A b ' the right-hand side is not the total kinetic energy of the body,
: | : ; : | j | because it excludes contributions from parts of the body that
‘ R P : 3 | are moving relative to the center of mass. As a result, some
C : : : : I ! physicists refer to the integrdlF . dr. ,, as pseudowork and

] ‘ ‘ : ‘ : ' Eqg. (1) as the center of mass equation. Though it rarely af-
fects getting the right answer for traditional mechanics prob-

-~ - - ‘Spring 3 Spring Constant - - - -~ - - | ---Rectangle 2 Mass -~~~ -~ -~~~ =

T [ ; lems like the one presented here, failure to carefully distin-

! ; ‘ ; ; ! ; 5 guish between different “works” and “energies” can lead to
R SREEEEE EEEEET s LTI ST ELTEE SEREEEE PR W sloppy reasoning about energy and wrong answers in other
1) Find the velocity when x=0. | : : . contexts(for example, thermal physigsFor a fuller discus-

2) Suppose u=0.3. How far will the block go before stopping? sion of work, pseudowork, and related issues, see Refs. 11 or
e R e Rt R - 12.

Fig. 1. The problem presented to students in the SCALE-UP class. The If We us.e Eq'(l) to relate the posltlon of one stopplng/
instructor displayed this static image, which was created in a simulatiortarting point and the next, we obtain
package]nteractive PhysicsOnce students solved the problem, they were

112 112 —
given access to the simulation file. In the simulation program, students can ~ 2KXn+ 1~ 2KXp— Mg Xy 41— Xp| =0, (2
use the sliders to alter system parameters. Click-dragging the box alters its .
initial position. As the absolute value sign suggests, there are two cases to be

considered when solving fox,, ;. If the starting/stopping
point is beyond some critical distance from the origin, the

such as the flowchart in Fig. 2 often are employed by experp!ock will have to cross the origin and the positions of the
problem solvers, but are rarely useful for solving the types ofU"ning/stopping pointsx,,; andx,, have the opposite al-
problems presented in most textbooks. gebraic signs. If the block is less than this crmgal distance

To construct the solution, we follow the flowchart. Assumefrom the origin, x,.; and x, are on the same side of the
that the block is momentarily at rest at positigg. If the ~ ©0rigin and have the same sign. _ .
spring force does not exceed the force of static frictitrat ~ Same Side Motion (Case In this case, the starting posi-
is, if k|X,|<usmg), the motion ceases. Otherwise, the blocktion x, is far enough from the origin that the block WI||
will break free and slide. The block will travel toward the MOVe, but close enough to the origin that the mass will not
origin and eventually come to rest, at least momentarily, ar0ss the origin. In this cas, , ; andx, have the same sign
some new position,,, ;. The position of these two turning/ and [X,.1—X,| can be replaced byx, 1| —[x,|. Equation
stopping pointsx,,, andx,, can be easily related using (2) becomes:

1 I, 1= 3= wemg([Xns 1| = [X4]) . ©)
J Ftotdrc_m_:A(Emvg,m_). (1) 2K R+ 17 2KX = Mk g(| n+1| | n|)
Equation(3) can be solved fofx,, ;| by factoring the left-
where F; is the sum of the external forces acting on thehand side and then simplifying:
block.

%k(|xn+1| + |Xn|)(|xn+1| - |Xn|):/-Lkmg(|Xn+l| - |Xn|)(v

2pumg
Xl [ = 22, ©

or
[Xn+ 1] =C =[x, ©®)

whereC=2u,mg/k. Same side motion can occur only if the
maximum pseudowork the spring can do does not exceed the

pseudowork needed to move the block past the origin against
Locate the next o 12 ) o 8
tuming/stopplng point friction (3kx;=<pu,mg|Xx,|). It is not surprising that this con-
dition reduces tdx,|<C, because Eq6) has no solution if
‘ |x,|>C. Thus,C represents a characteristic distance for this

system.

U’;?,;Lm:ﬁ‘:s ?n"t:rm" Not only must the turning/stopping point, be within a
distanceC of the origin for same side motion to occur, it

must be far enough from the origin for movement to occur.

Fig. 2. The flowchart shows one strategy for creating a map of the motiorFlor_thiS to happen, the _spring fo.rce ml_JSt exceed the static
that can be used to find the total distance traveled by the object. friction force at the turning/stopping poink|i,|> wmg).
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We can rewrite this condition to obtain a characteristic dis-and int denotes the largest integer less than the argufent.
tance related to the static coefficient of friction: (Remember that the mass crosses the origin once when it

Ix,|>D ) moves fromx,, to X, 1 .) For these combinations of surfaces

n ' with ug>2u,, motion ceases completely when the mass
whereD= usmg/k. In order for same side motion to occur, arrives atxy,,, because same side motion is impossible if
C=|x,|>D. Note that same side motion is impossible if ws>2uy.
ns> 2y, becaus® must be larger tha@ for the condition For most combinations of surfaces, however<2u,,
C=|x,/>D to hold. It is interesting that, up to dimension- and the requirement thax,|>C fails before the condition
less factors, the values of these two characteristic distancdgr movement can fail. In this regime, we can substitute Eq.
can be obtained from dimensional analysis. (9) into |x,|>C to determine the number of trips through the
Intuition suggests that same side motion occurs at mosirigin. The result is that
once. It seems reasonable that if the mass can't cross the
origin, the spring will not be stretched enoughxt.; to N=int* M) (e=<2py) (13)
. .. . A C S k/ -
overcome static friction and the mass will remain at rest
when it .reaches<n+1. Let's qheck this supposition. If the | this domain whereu <2pu,, the end of origin crossing
mass fails to cross the origixn+1|=C—|xa| and|X,+1|  motion does not necessarily signal the end of motion. After
<|x|, so that [x,.1|<3C or, equivalently, k|x,+1|  origin crossings, the mass arrivest If k|xy|>usmg, the
<ugmg. Because the spring force is weaker than the forceplock will execute same side motion before motion ceases.
of kinetic friction, the spring force will be weaker than the This occurs if|xy|>D or
force of static friction, provided thais= u, . Thus the block
will not move when it reaches,, . ;. M—i *(M) > Ks (14)
Origin Crossing Motion (Case Il)In this case, the mass C CJ 2u’

starts far enough from the origin that it will cross the origin gq,ation(14) is found by substituting the results from Egs.
when it travels from one turmng/;toppmg point to the next.(G), (7), and(13) into |y . 1| >D. Notice that conditior{14)
Now Xy, 1 andx have opp03|_te signs afeh, ., — X,| can be is more restrictive thap <2, , because the left-hand side
replaced byjxy .1 +[xy|. In this case, Eq(2) reduces to must be less than unity. Equati¢i) reflects the reality that

Xn11] =%, = C. (8)  ms=2uy constitutes a necessary, but not sufficient, condition

for same side motion.

Equation(2) now yields a recursion relation. Each time the  The total distance traveled by the mass can now be calcu-
mass passes through the origin, the turning/stopping poinhted. The mass will execute trips through the origin. If the
moves a distanc€ closer to the origin. Notice that this conditions are just right, the object will execute same side
linear recursion relation is in sharp contrast with the expomotion and stop. Otherwise, the motion ceases immediately
nential decay of an oscillator damped by a force proportionahfter the N trips through the origin. The distance traveled
to velocity. The iterative application of E¢8) shows that  during the origin crossings can be found by brute force sum-

X+ 1] = |%o| = (n+1)C, 9) mat_ic_m. Because the first trip through the origin starts from

positionxg,

whereX, is the initial position of the mass ang,, ; is the N N
position aftern+1 trips through the origin. Equation$) Si= > Sii= 2 ([Xnoa|+%4)). (15)
and(9) remain valid as long as both the condition for cross- n=1 n=1
ing the origin (x,|>C) and the condition for movement
(|xs|>D) hold. With each trip through the origin, the
turning/stopping point moves a distanCecloser to the ori-
gin. The pattern continues until one of these two conditions N N
fails. Si=2 Sp-1= 2 (%ol ~(N—1)C+|xe| —nC)

For a few combinations of surfaces, such as glass on n=t n=1
glass®® us>2u, (or, equivalentlyD>C). For these combi- N
nations, the condition for movement fails before the condi- = Z (2|xo|+C—2n0C), (16)
tion for crossing the origin can fail. The substitution of Eq. n=1
(9) into the condition for movement determines the upperor, simplifying the sum,

If we use Eq/(9) twice, once withn—1 and once witn, Eq.
(15) becomes

bound onn: )
S||:2N|X0|—N C. (17)
SR (10 Equation(17) can also be found more elegantly by applying
If we solve forn and use the definition dd, we find the relation between pseudowork and center of mass kinetic
energy:
|X0| Ms . , ,

Unless the object executes same side motion, the subtotal,

Equation(11) means that the mass goes through the ogin S, , represents the total distance traveled. If condifib4)

times, where holds, same side motion occurs and the mass travels an ad-
X ditional distances,, before stopping:
N=1+int* ﬂ— 'LLS) (ms>2my), (12 '
C 2u Si=xn|— XN (19
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Table I. Summary of results for the algebraic solution for different ranges ofyyhere
1s. The number of times the mass crosses the oribinand the total

distance traveleds, depend on the characteristic distance that measures the k
relative strength of the spring force and the kinetic friction fore: 0=\ (243
=2umgk. The function mod represents the remainder of the argument
once the integer part has been subtracted: meek—int(x). and
Number of origin Total distance traveled, 2umg
Range of validity crossingsN S = (24b
2
Hs g Ltint* [¥ol “S) 2NPxo| ~N7C These general solutiongg(t), cannot constitute the solu-
24 o C 2m ) tion for the equation of motion without modification. There
1>£>moc<ﬁ) int*(@) 2NIxo|—N*C are two major problems. W represents a single number, the
2p c c position function is discontinuous at each turning point. Fur-
moc{@)> J7 int*(@) 2(N+1)|xo| = (N+1)°C thermore, ifA is a constant for the entire motion, the ampli-
C )™ 2uy . C tude of the motion will never decrease. What the general
solutions represent is a family of solutions. Each member
solution is valid from one turning/stopping point until the
next and each has its own value for the constant
If we use Egs(6) and(9), Eq. (19) becomes From the form of the general solutions, it is apparent that
Si=|xnl—(C—|xn])=2|xn| = C=2|%o| = (2N+1)C. every half swing exhibits simple harmonic motion. Turning/

(20) stopping points are r_egglarly spaced in time, occ_urring_at a
] ) ) frequency of 2. The initial conditions at each turning point
If same side motion occurs, the total distance trave®d, determine the amplitude and phase for the following half
=§+9, is given by swing. The solution to the equation of motion is constructed
S=2(N+1)|xo|—(N+1)%C. (21) piecemeal fromlthe reqwrement tha; the posmqn of.the mass,
o N ] x(t), be a continuous function of time. For simplicity, we
Regardless of the value of initial conditions, the motion ter-will choose the initial conditions so that the block starts with
minates after a finite number of passes through the originzerg velocity att=0. We also will assume that the block is
The results of the solution determined so far are summarizegsjeased from a position sufficiently far to the right of the

in Table I. ] ) ) origin that the block breaks free and begins to slide. With this
There is reason to believe that the three regimes in Table dngice of initial conditions, theith turning/stopping point

may be related. Physicall, a single condition 4coyrs at=t,=(#/w)n. During the time interval between
(k|xp|<msmg) determines when motion terminates. The; ,ndt

only physical difference between same side motion and ori-" L
gin crossing motion is where the motion takes place. Math-  x(t)=A, cof wt)+(—1)"C/2, (25)
ematically, there are striking similarities across the rows of d
Table I. It seems plausible that single expressionsfandN an

may apply for all values ofis= u, . This possibility will be X(t)=—wA, sin(wt). (26)
explored in Sec. IV. The amplitudeA,,, must be positive in order for the velocity

IV. DYNAMICAL ANALYSIS USING DIFFERENTIAL to have the_ correct s_ign _for all values of The posit_ion of
EQUATIONS the nth turning point is directly related to the amplitude by

substitutingt,= (7/w)n into Eq. (25):

We now find the equation of motion for the mass starting ./ a\n
from Newton’s second law and gain insight into the dynam- Xn= (= 1) (AnFC/2). @7
ics of the system that the pseudowork method presented Mhe recursion relation foA, can be obtained by ensuring
Sec. Il does not provide. However, the differential equationshat x(t) is continuous, that is,
put the analysis beyond the reach of most students enrolled
in introductory physics courses. lim x(t)= lim x(t). (28

Applying Newton’s second law to the mass yields one of  t-t,, t—t g
two linear differential equations for the position of the block,

depending on the velocity of the block: Because the limit on the left-hand side is approached from

times greater thah,. ,, n must be replaced bg+1 in Eq.

mx=—kx+umg (x<0) (228 (25). However, Eq(25) applies to the limit on the right-hand
and side, so the continuity condition becomes

mx= —kx—pmg  (x>0). 220  Anrico§(n+1)w]+(—1)"ICR2
The general solution to E422) is simply the solution to the =A,co§(n+1)7]+(—1)"C/2, (29

homogenous equation for the simple harmonic oscillator plu
an additive constant:

Xs(t)=Acogwt—¢)+Cl2 (x<0) (233 =An(—1)""+(-1)"Cl2, (30)
and A, 1=A,—C, (3D
Xg(t)=Acogwt—¢)—C/2 (X>0), (23  so that

Ansa(— )M I+ (— 1) ICR2
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An = AO —nC. (32) [ 3 :<-Pasition of Rectangle 2

The physical interpretation of E¢31) is that the amplitude
of the half swing decreases I6ywith each half swing. This
result matches that of the pseudowork method presented in
Sec. Ill. Moreover, if we substitute the expression fay
from Eq.(27) into Eq.(32), we recover the recursion relation
for x, presented in Sec. Ill.

Equation(32) sets a conservative upper bound on the in-
dex n, becauseé\, must be a positive number for ail The
motion will terminate even sooner if the spring cannot over-

come the static force of friction at the turning/stopping point. 1.0 30 5.0 7.0 g

Motion is forbidden ifk|x,| < usmg. This condition can be '

rewritten using the definition of and Eq.(27): Fig. 3. Graphical output fronmnteractive Physicgor a spring/mass system
c damped by a constant magnitude force. For this grapks2 kg, k

At o< Ms c. 33) =50 N/m, us=0.15, 4, =0.11, andxo=1 m.

2] 2uy

BecauseA,, and C are both positive, the absolute value can ot

be removed. If we substitute E(2) into Eq.(33) and rear- n=int(— ] (40)

range the terms, we find the forbidden valuesof ™

C s After t=(Ngopt 1)7/ @, the mass remains motionless at
Aot 5=2,,.C BV e (DM Ay g €1+ (-1, (4D

s Most textbooks treat an oscillator damped by a force pro-
Ap+ > Z—Csnc, (35 portional to the velocity. The system studied in this article

ik differs from the traditional damped harmonic oscillator in
Ao s— i two fundamental ways. The amplitude of the motion decays
ol 2 =n. (36) arithmetically, rather than exponentially. The amplitude,

k

which is constant for each half swing of the motion, de-

Hence, the motion terminates on the inday,,, given by creases_by a fixed amount at each turning point. As a r{asult,
the motion ceases completely after a finite time, in direct

contrast to the traditional damped harmonic oscillator, which

Ao s~ i
B (37) never dies out completely.

Nstop=INt* (E 2k
Because the mass stops at the end ofnthehalf swing, the
mass executesng,,+1) half swings before stopping. Dur- V- SIMULATION SOFTWARE

ing each half swing, the mass travels a distanég 2so the Even when a detailed mathematical analysis is inappropri-
total distance traveled is given by ate, students can use a variety of software packages to simu-
Nstop Nstop late the behavior of real systems and develop an intuitive
S=2> A,=22, (A,—nC) appreciation of their behavior. For example, wiititeractive
n=0 n=0 Physicsstudents can use icons and menus to set up a system

to study. Once the parameters have been chosen, the software

=2(Nsiopt 1)Ao~ Nstof Nstopt 1)C. - (38) animatés the evollﬁ)tion of the system. Students can experi-
At first glance, these results appear to contradict the resultsient with parameters like the spring constant or initial posi-

of the pseudowork solution, which suggest three differention, to examine how they affect the system’s behavior. The

regimes of behavior, depending on the relative valueg Of

and u, . These regimes, however, are an artifact of the dis-

tinction between same side and origin crossing motion. |23 5¢-Position of Rectangle 2

Equation(27) can be used to show that each of the termina-

tion conditions given in Table | is equivalent to E@®7). ﬁ

Similarly, both expressions for the total distance traveled are
equivalent to Eq(38).
To summarize the results of this section, the motion of

each half swing is essentially the motion of a simple har- “- | | /\ /\
monic oscillator centered about eithex=—C/2 or ' \/ \/

x=+C/2. At each turning point, the amplitude of the oscil- i
lator decreases b@ and the center of the oscillatory motion ¥
jumps instantaneously from one side of the origin to the '0'8
other. Beforet = (ngpt 1)@/, the mass moves according
to

1.0 3.0 5.0 70 [s]

Fig. 4. Comparison of the evolution of two spring/mass systems damped by
X(t)=(Ag—nC)cogwt) +(—1)"C/2, (39) @ constant magnitude force for two different valueg:gf 0.1 and 0.35. The
systems share other system parametars2 kg, k=50 N/m, us=0.4, and
where Xo=1m.
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CFD.py - C:\My Documents\CFD.py _ (O] x]

File Edit Format Run Windows Help

lfrom visual import ¥ # Load the VPython routines for animation Al
from visual.graph import * # and graphing

# Define objects for animation and graphing

L=vector(1,0,0) # A vector to represent the relaxed spring

s=vector (1.,0,0) # A vector to represent extension of spring

block=sphere (radius=0.25, color=color.cyvan, pos=L+s) # Draw a sphere for the block
spring=cylinder (pos=(0,0,0), axis=L+s, radius=.1) # Draw a cyl for the spring
scene.autoscale=0 # Turn off autoscaling in the animation
posgraph=gcurve (color=color.green) # Calling "gcurve" sets up a graphing window

# Initialize variables

k=100.; g=9.8; mu_s=.5; mu _k=.5; m=1.; dt=.0001; d=0.:; t=0.
F_mu_s=mu_s*mt*g

F_spring=-k*(block.pos-L)

almost_zero_p=mag(F_spring) *dc Fig. 5. A VPythonprogram that pro-
block.p=vector (0,0,0) duces an animation of the system
while it generates a position vs time
graph for the block. Screen shots of
the program’s output are shown in

vhile not (mag(block.p)<almost_gzero p and F_mu s>=mag(F_spring)): Figs. 6 and 7.

# Do the main physics loop until the block's momentum is almost zero
# AND the static friction force exceeds the spring force

if not (mag(block.p)<almost_cgero_p): # If the block is moving,
F_mu_k=-m*g*mu_k*norm(block.p) # calculate kinetic friction force

else: # If block is stopped,

F_mu_k=vector (0,0,0) # set kinetic friction force to zero
F_spring=-k* (block.pos-L) # Integrate Newton's 2nd law.
Fnec=F_spring+F mu k # Updating "block.pos" automatically
block.p=block.p+Fnet*dt # updates the block's position

block.pos=block.pos+block.p/m*tdc # in the animation
spring.axis=block.pos-spring.pos # Updating "spring.axis" updates

# spring length in the animation
d=d+mag (block.p/m) *dt
posgraph.plot (pos=(t,block.pos.x-L.x)) # Plot the point on the graph
t=t+dt

# End of the physics loop: Write the final result to a text window
print "Total distance traveled is"”, d b

e ilEars 2]

program also can produce graphs which are displayed in realutput tasks helpful in the physics classroom. As a result,
time alongside the animated system. Figure 3 shows a gragtudent effort can be focused on physics, instead of on pro-
generated byinteractive Physicgo check qualitative and gramming the visualization tools.
quantitative features of the analytical solutions presented in Two teachers at North Carolina State Univers{iuth
this paper. The display shows the qualitative features, such @habay and Bruce Sherwoodse VPythonextensively in
the sinusoidal time dependence and linear envelope. Severle SCALE-UP classroom. Their textMatter and
runs can be displayed on the same graph, so that the effect bfteractions'® is an excellent source of programming-based
varying system parameters can be studied. Figure 4 explorgsoblems. In the mechanics part of the matter and interac-
the effect of the kinetic coefficient on the time evolution of tions curriculum, students routinely write programs to ana-
the system. Controlled comparisons, such as the one sufyze the motion of physical systems. This approach high-
gested by Fig. 4, can be used before a student has done alights the primacy of Newton's second law in mechanics,
mathematical analysis to test ideas about the system as well
as develop students’ experimentation skills. Graphs and nu-
merical output also can be used to check quantitative predic-
tions once a solution has been produced. Indeed, the authors ki
usedInteractive Physicdo check many key results of the \
analysis presented in this paper.

The drawback of using microworld packages likéerac-
tive Physicdss that the computer calculates the solution for
the problem. All the student has to do is set up the system
and the computer takes care of all the physics. An alternative
is an environment where the student must program the phys-
ics into the simulation. The danger of using programming
environments is that the physics can be obscured by the cog-
nitive requirements of programming. To combat this prob-
lem, physics educators and programmers have developed

VPytho_n. VPythorretains the _features of theython pro-  Fig. 6. Position vs time graph produced by ¥Bythonprogram shown in
gramming language, but also includes modules that automatgyg. 5. The graph and the animation, Fig. 7, are produced simultaneously.
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i VPython calculus-based approach. Simulations can be used in the
classroom to help students gain additional insight into the
phenomenon. By selecting the approach most appropriate for
their students, teachers can present a situation for study that
requires deep thinking and cannot simply be looked up in the
text.
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