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Although a simple spring/mass system damped by a friction force of constant magnitude shares
many of the characteristics of the simple and damped harmonic oscillators, its solution is not
presented in most texts. Closed form solutions for the turning and stopping points can be found
using an energy-based approach. A dynamical approach leads to a closed form solution for the
position of the mass as a function of time. The main result is that the amplitude of the oscillator
damped by a constant magnitude friction force decreases by a constant amount each swing and the
motion dies out after a finite time. We present these two solutions and suggest ways that the system
can be used in the classroom. ©2004 American Association of Physics Teachers.
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I. INTRODUCTION

Introductory courses in physics strive to teach student
think physically and become better problem solvers. Inter
tive studio physics classes have been shown to improve
dents’ conceptual understanding and problem-solv
ability.1–3 In such classes, students typically work together
solve carefully constructed problems. These problems ra
from conceptual exercises like those presented in Ref.
context-rich quantitative problems.5 Some studio classes als
integrate computers into the curriculum. In the SCALE-U6

classroom at North Carolina State University, students
computer tools such asInteractive Physics7 andVPython8 to
model the behavior of physical systems and to bridge the
between graphical, symbolic, and visual representatio
This article focuses on a problem studied in the SCALE-
classroom that can be used to improve students’ probl
solving and computer modeling skills.

The physical system is easy to describe: a block resting
a rough horizontal surface is attached to a stretched sp
and released. Figure 1 shows how the problem was prese
to the students at the beginning of the simple harmonic m
tion unit. The question was intended as a simple applica
of the work-energy theorem. However, the students~and in-
structors! quickly discovered that the addition of a consta
frictional force made the system considerably richer than
ther had imagined. Although the spring/mass system ofte
presented in the context of simple harmonic oscillators,
spring/mass system damped by a force of constant ma
tude is rarely studied. Because the problem is not prese
in any readily available text,9 students cannot use a formu
matching approach or mimic a textbook solution.

The system can be solved analytically, but the solution
not easy. Students must start from first principles, rea
qualitatively to plan a solution strategy, and then check
qualitative behavior of the result. The system has few co
ponents, so it can be easily simulated. Using the compu
students can check their hunches about the system’s beh
or perform controlled simulations to explore the effect
changing system parameters. Because the system is cl
related to the simple and damped harmonic oscillators,
477 Am. J. Phys.72 ~4!, April 2004 http://aapt.org/ajp
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system includes widely applicable physics and shares m
of the characteristics of more commonly studied oscillato
However, as we will show, the motion of the system
unique in several key ways and may provide insight into
dynamics of real damped systems. In the following w
present two general solutions for the oscillator damped b
constant magnitude force and suggest ways that the prob
might be used in the physics classroom.

II. THE MODEL SYSTEM

A block of massm attached to a spring of strengthk
moves on a rough horizontal surface with friction coef
cients,ms>mk . The block is released from rest. For conv
nience, the origin of the coordinates is chosen so that
spring has minimum potential energy at the origin. A curso
look at the system strongly suggests that the mass will ev
tually stop moving, but it is not immediately clear when~or
where! this will happen. Indeed, students in our classes as
many of the salient questions: When will the motion sto
How far will the mass travel before it stops? How ma
times will the mass go back and forth? Where~at what po-
sition! will the mass stop? These questions cannot be
swered in one or two steps. The answers depend on how
the block is from the origin when it is released. If the blo
starts very close to the origin, the block will not move at a
Start a little further from the origin, and the block will brea
free and slide, but may not be able to move again whe
comes to rest at the far end of its motion.

III. ENERGY-LIKE METHODS: AN ALGEBRAIC
ANALYSIS

Before diving into the details, the problem solver mu
map a strategy for solving the problem based on fundame
physics concepts.10 The qualitative analysis offered in th
previous paragraph suggests one strategy for solving
problem. Figure 2 shows a flowchart for an iterative soluti
employing the principle of energy conservation. Heurist
477© 2004 American Association of Physics Teachers
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such as the flowchart in Fig. 2 often are employed by exp
problem solvers, but are rarely useful for solving the types
problems presented in most textbooks.

To construct the solution, we follow the flowchart. Assum
that the block is momentarily at rest at positionxn . If the
spring force does not exceed the force of static friction~that
is, if kuxnu<msmg), the motion ceases. Otherwise, the blo
will break free and slide. The block will travel toward th
origin and eventually come to rest, at least momentarily
some new position,xn11 . The position of these two turning
stopping points,xn11 andxn , can be easily related using

E F tot drc.m.5DS 1

2
mvc.m.

2 D , ~1!

where F tot is the sum of the external forces acting on t
block.

Fig. 1. The problem presented to students in the SCALE-UP class.
instructor displayed this static image, which was created in a simula
package,Interactive Physics. Once students solved the problem, they we
given access to the simulation file. In the simulation program, students
use the sliders to alter system parameters. Click-dragging the box alte
initial position.

Fig. 2. The flowchart shows one strategy for creating a map of the mo
that can be used to find the total distance traveled by the object.
478 Am. J. Phys., Vol. 72, No. 4, April 2004
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Before continuing, a few words about Eq.~1! are in order.
Although Eq.~1! is sometimes called the work-energy the
rem, this name is somewhat misleading. If parts of an
tended body move relative to the center of mass, the inte
on the left-hand side of Eq.~1! is not equal to the total work
done on the body. Likewise, the kinetic energy-like term
the right-hand side is not the total kinetic energy of the bo
because it excludes contributions from parts of the body
are moving relative to the center of mass. As a result, so
physicists refer to the integral* F tot drc.m. as pseudowork and
Eq. ~1! as the center of mass equation. Though it rarely
fects getting the right answer for traditional mechanics pr
lems like the one presented here, failure to carefully dis
guish between different ‘‘works’’ and ‘‘energies’’ can lead t
sloppy reasoning about energy and wrong answers in o
contexts~for example, thermal physics!. For a fuller discus-
sion of work, pseudowork, and related issues, see Refs. 1
12.

If we use Eq.~1! to relate the position of one stopping
starting point and the next, we obtain

1
2kxn11

2 2 1
2kxn

22mkmguxn112xnu50. ~2!

As the absolute value sign suggests, there are two cases
considered when solving forxn11 . If the starting/stopping
point is beyond some critical distance from the origin, t
block will have to cross the origin and the positions of t
turning/stopping points,xn11 and xn , have the opposite al
gebraic signs. If the block is less than this critical distan
from the origin,xn11 and xn are on the same side of th
origin and have the same sign.

Same Side Motion (Case I). In this case, the starting pos
tion xn is far enough from the origin that the block wi
move, but close enough to the origin that the mass will
cross the origin. In this case,xn11 andxn have the same sign
and uxn112xnu can be replaced byuxn11u2uxnu. Equation
~2! becomes:

1
2kxn11

2 2 1
2kxn

25mkmg~ uxn11u2uxnu!. ~3!

Equation~3! can be solved foruxn11u by factoring the left-
hand side and then simplifying:

1
2k~ uxn11u1uxnu!~ uxn11u2uxnu!5mkmg~ uxn11u2uxnu!,

~4!

uxn11u1uxnu5
2mkmg

k
, ~5!

or

uxn11u5C2uxnu, ~6!

whereC[2mkmg/k. Same side motion can occur only if th
maximum pseudowork the spring can do does not exceed
pseudowork needed to move the block past the origin aga

friction ( 1
2kxn

2<mkmguxnu). It is not surprising that this con
dition reduces touxnu<C, because Eq.~6! has no solution if
uxnu.C. Thus,C represents a characteristic distance for t
system.

Not only must the turning/stopping pointxn be within a
distanceC of the origin for same side motion to occur,
must be far enough from the origin for movement to occ
For this to happen, the spring force must exceed the st
friction force at the turning/stopping point (kuxnu.msmg).
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We can rewrite this condition to obtain a characteristic d
tance related to the static coefficient of friction:

uxnu.D, ~7!

whereD[msmg/k. In order for same side motion to occu
C>uxnu.D. Note that same side motion is impossible
ms.2mk , becauseD must be larger thanC for the condition
C>uxnu.D to hold. It is interesting that, up to dimension
less factors, the values of these two characteristic dista
can be obtained from dimensional analysis.

Intuition suggests that same side motion occurs at m
once. It seems reasonable that if the mass can’t cross
origin, the spring will not be stretched enough atxn11 to
overcome static friction and the mass will remain at r
when it reachesxn11 . Let’s check this supposition. If the
mass fails to cross the origin,uxn11u5C2uxnu and uxn11u
,uxnu, so that uxn11u, 1

2C or, equivalently, kuxn11u
,mkmg. Because the spring force is weaker than the fo
of kinetic friction, the spring force will be weaker than th
force of static friction, provided thatms>mk . Thus the block
will not move when it reachesxn11 .

Origin Crossing Motion (Case II). In this case, the mas
starts far enough from the origin that it will cross the orig
when it travels from one turning/stopping point to the ne
Now xn11 andxn have opposite signs anduxn112xnu can be
replaced byuxn11u1uxnu. In this case, Eq.~2! reduces to

uxn11u5uxnu2C. ~8!

Equation~2! now yields a recursion relation. Each time th
mass passes through the origin, the turning/stopping p
moves a distanceC closer to the origin. Notice that thi
linear recursion relation is in sharp contrast with the ex
nential decay of an oscillator damped by a force proportio
to velocity. The iterative application of Eq.~8! shows that

uxn11u5ux0u2~n11!C, ~9!

wherex0 is the initial position of the mass andxn11 is the
position aftern11 trips through the origin. Equations~8!
and~9! remain valid as long as both the condition for cros
ing the origin (uxnu.C) and the condition for movemen
(uxnu.D) hold. With each trip through the origin, th
turning/stopping point moves a distanceC closer to the ori-
gin. The pattern continues until one of these two conditio
fails.

For a few combinations of surfaces, such as glass
glass,13 ms.2mk ~or, equivalently,D.C). For these combi-
nations, the condition for movement fails before the con
tion for crossing the origin can fail. The substitution of E
~9! into the condition for movement determines the upp
bound onn:

ux0u2nC.D ~ms.2mk!. ~10!

If we solve forn and use the definition ofD, we find

n,
ux0u
C

2
ms

2mk
~ms.2mk!. ~11!

Equation~11! means that the mass goes through the origiN
times, where

N511 int* S ux0u
C

2
ms

2mk
D ~ms.2mk!, ~12!
479 Am. J. Phys., Vol. 72, No. 4, April 2004
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and int* denotes the largest integer less than the argume14

~Remember that the mass crosses the origin once whe
moves fromxn to xn11 .) For these combinations of surface
with ms.2mk , motion ceases completely when the ma
arrives atxN11 , because same side motion is impossible
ms.2mk .

For most combinations of surfaces, however,ms<2mk ,
and the requirement thatuxnu.C fails before the condition
for movement can fail. In this regime, we can substitute E
~9! into uxnu.C to determine the number of trips through th
origin. The result is that

N5 int* S ux0u
C D ~ms<2mk!. ~13!

In this domain wherems<2mk , the end of origin crossing
motion does not necessarily signal the end of motion. AfteN
origin crossings, the mass arrives atxN . If kuxNu.msmg, the
block will execute same side motion before motion ceas
This occurs ifuxNu.D or

ux0u
C

2 int* S ux0u
C D.

ms

2mk
. ~14!

Equation~14! is found by substituting the results from Eq
~6!, ~7!, and~13! into uxN11u.D. Notice that condition~14!
is more restrictive thanms<2mk , because the left-hand sid
must be less than unity. Equation~14! reflects the reality that
ms<2mk constitutes a necessary, but not sufficient, condit
for same side motion.

The total distance traveled by the mass can now be ca
lated. The mass will executeN trips through the origin. If the
conditions are just right, the object will execute same s
motion and stop. Otherwise, the motion ceases immedia
after theN trips through the origin. The distance travele
during the origin crossings can be found by brute force su
mation. Because the first trip through the origin starts fro
positionx0 ,

SII 5 (
n51

N

Sn215 (
n51

N

~ uxn21u1uxnu!. ~15!

If we use Eq.~9! twice, once withn21 and once withn, Eq.
~15! becomes

SII 5 (
n51

N

Sn215 (
n51

N

~ ux0u2~n21!C1ux0u2nC!

5 (
n51

N

~2ux0u1C22nC!, ~16!

or, simplifying the sum,

SII 52Nux0u2N2C. ~17!

Equation~17! can also be found more elegantly by applyin
the relation between pseudowork and center of mass kin
energy:

2mkmgSII 2
1
2k~ uxNu22ux0u2!50. ~18!

Unless the object executes same side motion, the subt
SII , represents the total distance traveled. If condition~14!
holds, same side motion occurs and the mass travels an
ditional distance,SI , before stopping:

SI5uxNu2uXN11u. ~19!
479Marchewka, Abbott, and Beichner
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If we use Eqs.~6! and ~9!, Eq. ~19! becomes

SI5uxNu2~C2uxNu!52uxNu2C52ux0u2~2N11!C.
~20!

If same side motion occurs, the total distance traveledS
5SI1SII , is given by

S52~N11!ux0u2~N11!2C. ~21!

Regardless of the value of initial conditions, the motion t
minates after a finite number of passes through the ori
The results of the solution determined so far are summar
in Table I.

There is reason to believe that the three regimes in Tab
may be related. Physically, a single conditio
(kuxnu<msmg) determines when motion terminates. T
only physical difference between same side motion and
gin crossing motion is where the motion takes place. Ma
ematically, there are striking similarities across the rows
Table I. It seems plausible that single expressions forSandN
may apply for all values ofms>mk . This possibility will be
explored in Sec. IV.

IV. DYNAMICAL ANALYSIS USING DIFFERENTIAL
EQUATIONS

We now find the equation of motion for the mass start
from Newton’s second law and gain insight into the dyna
ics of the system that the pseudowork method presente
Sec. III does not provide. However, the differential equatio
put the analysis beyond the reach of most students enro
in introductory physics courses.

Applying Newton’s second law to the mass yields one
two linear differential equations for the position of the bloc
depending on the velocity of the block:

mẍ52kx1mkmg ~ ẍ,0! ~22a!

and

mẍ52kx2mkmg ~ ẍ.0!. ~22b!

The general solution to Eq.~22! is simply the solution to the
homogenous equation for the simple harmonic oscillator p
an additive constant:

xG~ t !5A cos~vt2f!1C/2 ~ ẍ,0! ~23a!

and

xG~ t !5A cos~vt2f!2C/2 ~ ẍ.0!, ~23b!

Table I. Summary of results for the algebraic solution for different range
ms . The number of times the mass crosses the origin,N, and the total
distance traveled,S, depend on the characteristic distance that measures
relative strength of the spring force and the kinetic friction force:C
[2mkmg/k. The function mod represents the remainder of the argum
once the integer part has been subtracted: mod(x)[x2 int(x).

Range of validity
Number of origin

crossings,N
Total distance traveled,

S

ms

2mk
.1 11int* S ux0u

C
2

ms

2mk
D 2Nux0u2N2C

1.
ms

2mk
.modS ux0u

C D int* S ux0u
C D 2Nux0u2N2C

modS ux0u
C D.

ms

2mk
int* S ux0u

C D 2(N11)ux0u2(N11)2C
480 Am. J. Phys., Vol. 72, No. 4, April 2004
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where

v[Ak

m
, ~24a!

and

C[
2mkmg

k
. ~24b!

These general solutions,xG(t), cannot constitute the solu
tion for the equation of motion without modification. The
are two major problems. IfA represents a single number, th
position function is discontinuous at each turning point. F
thermore, ifA is a constant for the entire motion, the amp
tude of the motion will never decrease. What the gene
solutions represent is a family of solutions. Each mem
solution is valid from one turning/stopping point until th
next and each has its own value for the constantA.

From the form of the general solutions, it is apparent t
every half swing exhibits simple harmonic motion. Turnin
stopping points are regularly spaced in time, occurring a
frequency of 2v. The initial conditions at each turning poin
determine the amplitude and phase for the following h
swing. The solution to the equation of motion is construc
piecemeal from the requirement that the position of the ma
x(t), be a continuous function of time. For simplicity, w
will choose the initial conditions so that the block starts w
zero velocity att50. We also will assume that the block
released from a position sufficiently far to the right of th
origin that the block breaks free and begins to slide. With t
choice of initial conditions, thenth turning/stopping point
occurs att5tn5(p/v)n. During the time interval between
tn and tn11 ,

x~ t !5An cos~vt !1~21!nC/2, ~25!

and

ẋ~ t !52vAn sin~vt !. ~26!

The amplitude,An , must be positive in order for the velocit
to have the correct sign for all values ofn. The position of
the nth turning point is directly related to the amplitude b
substitutingtn5(p/v)n into Eq. ~25!:

xn5~21!n~An1C/2!. ~27!

The recursion relation forAn can be obtained by ensurin
that x(t) is continuous, that is,

lim
t→tn11

1

x~ t !5 lim
t→tn11

2

x~ t !. ~28!

Because the limit on the left-hand side is approached fr
times greater thantn11 , n must be replaced byn11 in Eq.
~25!. However, Eq.~25! applies to the limit on the right-hand
side, so the continuity condition becomes

An11 cos@~n11!p#1~21!n11C/2

5An cos@~n11!p#1~21!nC/2, ~29!

An11~21!n111~21!n11C/2

5An~21!n111~21!nC/2, ~30!

An115An2C, ~31!

so that

f

he

t
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An5A02nC. ~32!

The physical interpretation of Eq.~31! is that the amplitude
of the half swing decreases byC with each half swing. This
result matches that of the pseudowork method presente
Sec. III. Moreover, if we substitute the expression forAn
from Eq.~27! into Eq.~32!, we recover the recursion relatio
for xn presented in Sec. III.

Equation~32! sets a conservative upper bound on the
dex n, becauseAn must be a positive number for alln. The
motion will terminate even sooner if the spring cannot ov
come the static force of friction at the turning/stopping poi
Motion is forbidden ifkuxnu<msmg. This condition can be
rewritten using the definition ofC and Eq.~27!:

UAn1
C

2U< ms

2mk
C. ~33!

BecauseAn andC are both positive, the absolute value c
be removed. If we substitute Eq.~32! into Eq. ~33! and rear-
range the terms, we find the forbidden values ofn:

A02nC1
C

2
<

ms

2mk
C, ~34!

A01
C

2
2

ms

2mk
C<nC, ~35!

A0

C
2

ms2mk

2mk
<n. ~36!

Hence, the motion terminates on the index,nstop, given by

nstop5 int* S A0

C
2

ms2mk

2mk
D . ~37!

Because the mass stops at the end of thenth half swing, the
mass executes (nstop11) half swings before stopping. Dur
ing each half swing, the mass travels a distance 2An , so the
total distance traveled is given by

S52(
n50

nstop

An52(
n50

nstop

~A02nC!

52~nstop11!A02nstop~nstop11!C. ~38!

At first glance, these results appear to contradict the res
of the pseudowork solution, which suggest three differ
regimes of behavior, depending on the relative values ofms

andmk . These regimes, however, are an artifact of the d
tinction between same side and origin crossing moti
Equation~27! can be used to show that each of the termi
tion conditions given in Table I is equivalent to Eq.~37!.
Similarly, both expressions for the total distance traveled
equivalent to Eq.~38!.

To summarize the results of this section, the motion
each half swing is essentially the motion of a simple h
monic oscillator centered about eitherx52C/2 or
x51C/2. At each turning point, the amplitude of the osc
lator decreases byC and the center of the oscillatory motio
jumps instantaneously from one side of the origin to
other. Beforet5(nstop11)p/v, the mass moves accordin
to

x~ t !5~A02nC!cos~vt !1~21!nC/2, ~39!

where
481 Am. J. Phys., Vol. 72, No. 4, April 2004
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p D . ~40!

After t5(nstop11)p/v, the mass remains motionless at

xstop5~21!nstop11@A02nstopC#1~21!nstopC/2. ~41!

Most textbooks treat an oscillator damped by a force p
portional to the velocity. The system studied in this artic
differs from the traditional damped harmonic oscillator
two fundamental ways. The amplitude of the motion deca
arithmetically, rather than exponentially. The amplitud
which is constant for each half swing of the motion, d
creases by a fixed amount at each turning point. As a re
the motion ceases completely after a finite time, in dir
contrast to the traditional damped harmonic oscillator, wh
never dies out completely.

V. SIMULATION SOFTWARE

Even when a detailed mathematical analysis is inappro
ate, students can use a variety of software packages to s
late the behavior of real systems and develop an intui
appreciation of their behavior. For example, withInteractive
Physicsstudents can use icons and menus to set up a sy
to study. Once the parameters have been chosen, the sof
animates the evolution of the system. Students can exp
ment with parameters like the spring constant or initial po
tion, to examine how they affect the system’s behavior. T

Fig. 3. Graphical output fromInteractive Physicsfor a spring/mass system
damped by a constant magnitude force. For this graph,m52 kg, k
550 N/m, ms50.15,mk50.11, andx051 m.

Fig. 4. Comparison of the evolution of two spring/mass systems dampe
a constant magnitude force for two different values ofmk :0.1 and 0.35. The
systems share other system parameters:m52 kg, k550 N/m, ms50.4, and
x051 m.
481Marchewka, Abbott, and Beichner
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Fig. 5. A VPythonprogram that pro-
duces an animation of the system
while it generates a position vs time
graph for the block. Screen shots o
the program’s output are shown in
Figs. 6 and 7.
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program also can produce graphs which are displayed in
time alongside the animated system. Figure 3 shows a g
generated byInteractive Physicsto check qualitative and
quantitative features of the analytical solutions presente
this paper. The display shows the qualitative features, suc
the sinusoidal time dependence and linear envelope. Se
runs can be displayed on the same graph, so that the effe
varying system parameters can be studied. Figure 4 expl
the effect of the kinetic coefficient on the time evolution
the system. Controlled comparisons, such as the one
gested by Fig. 4, can be used before a student has done
mathematical analysis to test ideas about the system as
as develop students’ experimentation skills. Graphs and
merical output also can be used to check quantitative pre
tions once a solution has been produced. Indeed, the au
used Interactive Physicsto check many key results of th
analysis presented in this paper.

The drawback of using microworld packages likeInterac-
tive Physicsis that the computer calculates the solution
the problem. All the student has to do is set up the sys
and the computer takes care of all the physics. An alterna
is an environment where the student must program the p
ics into the simulation. The danger of using programm
environments is that the physics can be obscured by the
nitive requirements of programming. To combat this pro
lem, physics educators and programmers have develo
VPython. VPythonretains the features of thePython pro-
gramming language, but also includes modules that autom
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output tasks helpful in the physics classroom. As a res
student effort can be focused on physics, instead of on p
gramming the visualization tools.

Two teachers at North Carolina State University~Ruth
Chabay and Bruce Sherwood! use VPythonextensively in
the SCALE-UP classroom. Their text,Matter and
Interactions,15 is an excellent source of programming-bas
problems. In the mechanics part of the matter and inter
tions curriculum, students routinely write programs to an
lyze the motion of physical systems. This approach hig
lights the primacy of Newton’s second law in mechanic

Fig. 6. Position vs time graph produced by theVPythonprogram shown in
Fig. 5. The graph and the animation, Fig. 7, are produced simultaneou
482Marchewka, Abbott, and Beichner
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because numerical integration of Newton’s second law ta
center stage in the programs. TheVPythonprogram shown in
Fig. 5 illustrates the point. The program produces the p
tion versus time graph in one window~Fig. 6! as it generates
an animation of the system in another window~Fig. 7!.
When the motion ceases, the program prints the total
tance traveled in a text window. Notice that only a few lin
of code are needed to produce the graph and the anima
The basic algorithm shown in the example can be used
solve a wide variety of problems, including many that do n
have closed form solutions.

When students can write the same algorithm to stu
many diverse systems, they quickly begin to appreciate
general applicability of the principle on which the algorith
is based. It is powerful to learn that the same physics can
applied to solve many seemingly different problems, fro
finding the trajectory of Mars around the Sun to investigat
how the speed of a falling raindrop evolves with time.

VI. CONCLUSION

We have developed two solutions to a seemingly triv
physical situation. The results are physically interesti
When a spring/mass system is damped by a constant ma
tude force, the result is an oscillator that decays linearly w
time. This behavior is in stark contrast with results for t
spring/mass system damped by a force proportional to ve
ity, which decays exponentially with time. Instead of beco
ing imperceptibly small, the motion of the oscillator damp
by a constant magnitude force ceases completely after
nite time.

In the classroom, the simple spring/mass system dam
by a force of constant magnitude turns out to be a rich pl
ground for physics students. It is amenable to analysis
relatively simple algebra as well as a more advanc

Fig. 7. Screen shot of the animation produced by the program shown in
5. The block is represented by the sphere object called ‘‘block’’ and
spring is represented by a cylinder object called ‘‘spring.’’ The animat
window is created when the object block is defined. The block’s posi
and the spring’s length are animated by updating the appropriate attrib
of each object~block.pos and spring.axis!.
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calculus-based approach. Simulations can be used in
classroom to help students gain additional insight into
phenomenon. By selecting the approach most appropriate
their students, teachers can present a situation for study
requires deep thinking and cannot simply be looked up in
text.

ACKNOWLEDGMENTS

The authors would like to thank the US. Department
Education’s FIPSE program ~P116B71905 and
P116B000659! and the National Science Foundatio
~DUE9752313 and DUE9981107! for their on-going support
of the SCALE-UP project. The authors also thank the me
bers of the NCSU Physics Education Research and Deve
ment Group, especially Matthew Kohlmyer, who helped
learnVPython.

a!Electronic mail: marchew@post.tau.ac.il
b!Electronic mail: David.S.Abbott@Dartmouth.edu
c!Electronic mail: beichner@ncsu.edu
1Richard R. Hake, ‘‘Interactive-engagement versus traditional method
six-thousand-student survey of mechanics test data for introductory p
ics courses,’’ Am. J. Phys.66, 64–74~1998!.

2Jeffrey M. Saul, David S. Abbott, Rhett J. Allain, Duane L. Deardorff, a
Robert J. Beichner, ‘‘Evaluating introductory physics classes in light of
ABET criteria: An example from the SCALE-UP project,’’ Proceedings
the 2000 Annual Meeting of the American Society for Engineering Ed
cation, Seattle, WA.

3Randall D. Knight, An Instructor’s Guide to Introductory Physics
~Addison–Wesley, San Fransisco, CA, 2002!.

4Lillian C. McDermott, Peter S. Shaffer, and The Physics Education Gro
Tutorials in Introductory Physics and Homework Package~Prentice–Hall,
Upper Saddle River, NJ, 2001!.

5Patricia Heller and Mark Hollabaugh, ‘‘Teaching problem solving throu
cooperative grouping. 2. Designing problems and structuring groups,’’A
J. Phys.60, 637–644~1992!.

6More information on the SCALE-UP project is available at^http://
www.ncsu.edu/per&.

7Interactive Physics, MCS Software, Mandeville, LA. Information abou
the software can be found at^http://interactivephysics.com&.

8VPythonis free and open source. An introduction toVPythoncan be found
at ^http://vpython.org&.

9The only book we found that analyzes this system is Douglas A. Quad
and Allan R. D. Ramsay,Introduction to Advanced Mechanics~Bell, Lon-
don, 1962!.

10It is tempting to solve for the total distance traveled by equating the ini
elastic energy with the product of frictional force and distance. The
proach fails, however, because there is no guarantee that the block c
to rest at the spring’s equilibrium position.

11Bruce Sherwood, ‘‘Pseudowork and real work,’’Am. J. Phys.51, 597–602
~1983!.

12A. John Mallinckrodt and Harvey S. Leff, ‘‘All about work,’’ Am. J. Phys
60, 356–365~1992!.

13Raymond A. Serway and Robert J. Beichner,Physics for Scientists and
Engineers~Saunders, New York, 2000!, 5th ed., Vol. 1, p. 133.

14The int* function defined here is almost identical to the commonly used
~integer part! function. If x is not an integer, int* (x)5 int(x). If x is an
integer, int* (x)5 int(x)21.

15Ruth Chabay and Bruce Sherwood,Matter and Interactions~Wiley, New
York, 2002!, Vols. 1 and 2.

ig.
e

n
tes
483Marchewka, Abbott, and Beichner


