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Yes ! I've done it ! Recognition at last !  

  

This site has won an award !  

  

  

A Really Friendly Guide to 
Wavelets[1]  

 

(C) C. Valens, 1999-2004 

  

  

Sometimes people don't know how to address me when writing me. They call me professor Valens, 
doctor Valens, mr/miss Valens, Valens or professor Clemens, doctor Clemens, mr/miss Clemens, 

Clemens, or simply nothing. So then, how should you address me, you wonder? Well, I don't care, but if 
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you must know, I am (a) male.  

  

  

NEW!  

26/02/2004 
* I finally invested some time to learn how to make PDF files and updated my wavelet tutorial PDF 
file. 
* Made it all more printer friendly. Some images were to large to print correctly.  

15/11/2003 
* Fixed missing symbols (forgot to transform some GIF files to PNG). 
* Added little note about two-dimensional transform to the introduction.  

25/03/2002 
* New email address. The folks at iName.com now want money so I decided to let good old mindless 
go. 
* All GIF files have been replaced by PNG files. These files are a bit smaller than GIF files and so this 
page should load a bit faster. (Saved over 15KB on this page!) 
* Added a link to the Wavelet Forum at the end.  

Michael B. Stewart (of Rader, Fishman & Grauer PLLC) converted this tutorial to a pdf file.  

  

  

Disclaimer 

This tutorial is aimed at the engineer, not the mathematician. This does not mean that there will be no 
mathematics, it just means that there will be no proofs in the text. In my humble opinion, mathematical 
papers are completely unreadable because of the proofs that clutter the text. For proofs the reader is 
pointed to suitable references. The equations presented are there to illustrate and to clarify things, I 
hope. It should not be necessary to understand all the equations in order to understand the theory. 
However, to understand this tutorial, a mathematical background on an engineering level is required. 
Also some knowledge of signal processing theory might come in handy.  

The information presented in this tutorial is believed to be correct. However, no responsibilty 
whatsoever will be accepted for any damage whatsoever due to errors or misleading statements or 
whatsoever in this tutorial. Should there be anything incorrect, incomplete or not clear in this text, please 
let me know so that I can improve this tutorial.  

This tutorial is best viewed with graphics enabled, since all special characters and equations are 
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small .PNG files. However, care has been taken to provide alternative texts for all graphic objects.  

This tutorial was developed using Microsoft's Internet Explorer 4.0, so I guess that this will be the most 
suitable browser to read this tutorial.  
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1. Introduction  

It is well known from Fourier theory that a signal can be expressed as the sum of a, possibly infinite, 
series of sines and cosines. This sum is also referred to as a Fourier expansion. The big disadvantage of 
a Fourier expansion however is that it has only frequency resolution and no time resolution. This means 
that although we might be able to determine all the frequencies present in a signal, we do not know 
when they are present. To overcome this problem in the past decades several solutions have been 
developed which are more or less able to represent a signal in the time and frequency domain at the 
same time.  
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The idea behind these time-frequency joint representations is to cut the signal of interest into several 
parts and then analyze the parts separately. It is clear that analyzing a signal this way will give more 
information about the when and where of different frequency components, but it leads to a fundamental 
problem as well: how to cut the signal? Suppose that we want to know exactly all the frequency 
components present at a certain moment in time. We cut out only this very short time window using a 
Dirac pulse[2], transform it to the frequency domain and ... something is very wrong.  

The problem here is that cutting the signal corresponds to a convolution between the signal and the 
cutting window. Since convolution in the time domain is identical to multiplication in the frequency 
domain and since the Fourier transform of a Dirac pulse contains all possible frequencies the frequency 
components of the signal will be smeared out all over the frequency axis. (Please note that we are 
talking about a two-dimensional time-frequency transform and not a one-dimensional transform.) In fact 
this situation is the opposite of the standard Fourier transform since we now have time resolution but no 
frequency resolution whatsoever.  

The underlying principle of the phenomena just described is due to Heisenberg's uncertainty principle, 
which, in signal processing terms, states that it is impossible to know the exact frequency and the exact 
time of occurrence of this frequency in a signal. In other words, a signal can simply not be represented 
as a point in the time-frequency space. The uncertainty principle shows that it is very important how one 
cuts the signal.  

The wavelet transform or wavelet analysis is probably the most recent solution to overcome the 
shortcomings of the Fourier transform. In wavelet analysis the use of a fully scalable modulated window 
solves the signal-cutting problem. The window is shifted along the signal and for every position the 
spectrum is calculated. Then this process is repeated many times with a slightly shorter (or longer) 
window for every new cycle. In the end the result will be a collection of time-frequency representations 
of the signal, all with different resolutions. Because of this collection of representations we can speak of 
a multiresolution analysis. In the case of wavelets we normally do not speak about time-frequency 
representations but about time-scale representations, scale being in a way the opposite of frequency, 
because the term frequency is reserved for the Fourier transform.  

Since from literature it is not always clear what is meant by small and large scales, I will define it here 
as follows: the large scale is the big picture, while the small scales show the details. Thus, going from 
large scale to small scale is in this context equal to zooming in.  

In the following sections I will present the wavelet transform and develop a scheme that will allow us to 
implement the wavelet transform in an efficient way on a digital computer. The transform will be so 
efficient that it does not even use wavelets anymore. (The careful reader might raise an eyebrow here 
and ask: "Surely you can't be serious?")[3]  

But before we continue a disclaimer. Since wavelet theory is not a new thing anymore, it has been 
around now for fifteen years, say, I will not present a full and in-depth theory here. Several good 
textbooks on wavelet theory are available and many readable papers with a good review of wavelet 
theory have been published. The list of references at the end of this tutorial contains pointers to texts 
with more extensive wavelet theory coverage like (in random order) [Kai94], [Wei94], [She96], 
[Bur98], [Dau92], [Hub96], [Mal89], [Vet92]. I do however present some mathematical background in 
order to tell a coherent and clear tale (I hope).  

Having this said, let's go on to the wavelets.  
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2. The continuous wavelet transform 

The wavelet analysis described in the introduction is known as the continuous wavelet transform or 
CWT. More formally it is written as:  

      (1)  

where * denotes complex conjugation. This equation shows how a function f(t) is decomposed into a set 

of basis functions , called the wavelets. The variables s and , scale and translation, are the new 
dimensions after the wavelet transform. For completeness sake (2) gives the inverse wavelet transform. I 
will not expand on this since we are not going to use it:  

      (2)  

The wavelets are generated from a single basic wavelet (t), the so-called mother wavelet, by scaling 
and translation: 

      (3)  

In (3) s is the scale factor,  is the translation factor and the factor s-1/2 is for energy normalization 
across the different scales. 

It is important to note that in (1), (2) and (3) the wavelet basis functions are not specified. This is a 
difference between the wavelet transform and the Fourier transform, or other transforms. The theory of 
wavelet transforms deals with the general properties of the wavelets and wavelet transforms only. It 
defines a framework within one can design wavelets to taste and wishes.  

  

  

3. Wavelet properties 

The most important properties of wavelets are the admissibility and the regularity conditions and these 
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are the properties which gave wavelets their name. It can be shown [She96] that square integrable 
functions (t) satisfying the admissibility condition,  

      (4)  

can be used to first analyze and then reconstruct a signal without loss of information. In (4) ( ) stands 
for the Fourier transform of (t). The admissibility condition implies that the Fourier transform of (t) 
vanishes at the zero frequency, i.e. 

      (5)  

This means that wavelets must have a band-pass like spectrum. This is a very important observation, 
which we will use later on to build an efficient wavelet transform.  

A zero at the zero frequency also means that the average value of the wavelet in the time domain must 
be zero,  

      (6)  

and therefore it must be oscillatory. In other words, (t) must be a wave.  

As can be seen from (1) the wavelet transform of a one-dimensional function is two-dimensional; the 
wavelet transform of a two-dimensional function is four-dimensional. The time-bandwidth product of 
the wavelet transform is the square of the input signal and for most practical applications this is not a 
desirable property. Therefore one imposes some additional conditions on the wavelet functions in order 
to make the wavelet transform decrease quickly with decreasing scale s. These are the regularity 
conditions and they state that the wavelet function should have some smoothness and concentration in 
both time and frequency domains. Regularity is a quite complex concept and we will try to explain it a 
little using the concept of vanishing moments.  

If we expand the wavelet transform (1) into the Taylor series at t = 0 until order n (let  = 0 for 
simplicity) we get [She96]: 

      (7)  

Here f (p) stands for the pth derivative of f and O(n+1) means the rest of the expansion. Now, if we 
define the moments of the wavelet by M

p
, 
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      (8)  

then we can rewrite (7) into the finite development  

      (9)  

From the admissibility condition we already have that the 0th moment M0 = 0 so that the first term in the 

right-hand side of (9) is zero. If we now manage to make the other moments up to M
n
 zero as well, then 

the wavelet transform coefficients (s, ) will decay as fast as sn+2 for a smooth signal f(t). This is 
known in literature as the vanishing moments[4] or approximation order. If a wavelet has N vanishing 
moments, then the approximation order of the wavelet transform is also N. The moments do not have to 
be exactly zero, a small value is often good enough. In fact, experimental research suggests that the 
number of vanishing moments required depends heavily on the application [Cal96].  

Summarizing, the admissibility condition gave us the wave, regularity and vanishing moments gave us 
the fast decay or the let, and put together they give us the wavelet. More about regularity[5] can be 
found for instance in [Bur98] and [Dau92].  

  

  

4. Discrete wavelets 

Now that we know what the wavelet transform is, we would like to make it practical. However, the 
wavelet transform as described so far still has three properties that make it difficult to use directly in the 
form of (1). The first is the redundancy of the CWT. In (1) the wavelet transform is calculated by 
continuously shifting a continuously scalable function over a signal and calculating the correlation 
between the two. It will be clear that these scaled functions will be nowhere near an orthogonal basis[6] 
and the obtained wavelet coefficients will therefore be highly redundant. For most practical applications 
we would like to remove this redundancy.  

Even without the redundancy of the CWT we still have an infinite number of wavelets in the wavelet 
transform and we would like to see this number reduced to a more manageable count. This is the second 
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problem we have.  

The third problem is that for most functions the wavelet transforms have no analytical solutions and they 
can be calculated only numerically or by an optical analog computer. Fast algorithms are needed to be 
able to exploit the power of the wavelet transform and it is in fact the existence of these fast algorithms 
that have put wavelet transforms where they are today.  

Let us start with the removal of redundancy.  

As mentioned before the CWT maps a one-dimensional signal to a two-dimensional time-scale joint 
representation that is highly redundant. The time-bandwidth product of the CWT is the square of that of 
the signal and for most applications, which seek a signal description with as few components as 
possible, this is not efficient. To overcome this problem discrete wavelets have been introduced. 
Discrete wavelets are not continuously scalable and translatable but can only be scaled and translated in 
discrete steps. This is achieved by modifying the wavelet representation (3) to create [Dau92]  

      (10)  

Although it is called a discrete wavelet, it normally is a (piecewise) continuous function. In (10) j and k 
are integers and s0 > 1 is a fixed dilation step. The translation factor 0 depends on the dilation step. The 

effect of discretizing the wavelet is that the time-scale space is now sampled at discrete intervals. We 
usually choose s0 = 2 so that the sampling of the frequency axis corresponds to dyadic sampling. This is 

a very natural choice for computers, the human ear and music for instance. For the translation factor we 
usually choose 

0
 = 1 so that we also have dyadic sampling of the time axis.  
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Figure 1 

Localization of the discrete wavelets in the time-scale space on a dyadic grid.  

  

When discrete wavelets are used to transform a continuous signal the result will be a series of wavelet 
coefficients, and it is referred to as the wavelet series decomposition. An important issue in such a 
decomposition scheme is of course the question of reconstruction. It is all very well to sample the time-
scale joint representation on a dyadic grid, but if it will not be possible to reconstruct the signal it will 
not be of great use. As it turns out, it is indeed possible to reconstruct a signal from its wavelet series 
decomposition. In [Dau92] it is proven that the necessary and sufficient condition for stable 
reconstruction is that the energy of the wavelet coefficients must lie between two positive bounds, i.e.  

      (11)  

where || f ||2 is the energy of f(t), A > 0, B <  and A, B are independent of f(t). When (11) is satisfied, 

the family of basis functions 
j,k

(t) with j, k  Z is referred to as a frame with frame bounds A and B. 

When A = B the frame is tight and the discrete wavelets behave exactly like an orthonormal basis. When 
A  B exact reconstruction is still possible at the expense of a dual frame. In a dual frame discrete 
wavelet transform the decomposition wavelet is different from the reconstruction wavelet.  

We will now immediately forget the frames and continue with the removal of all redundancy from the 
wavelet transform. The last step we have to take is making the discrete wavelets orthonormal. This can 
be done only with discrete wavelets. The discrete wavelets can be made orthogonal to their own 
dilations and translations by special choices of the mother wavelet, which means:  
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      (12)  

An arbitrary signal can be reconstructed by summing the orthogonal wavelet basis functions, weighted 
by the wavelet transform coefficients [She96]:  

      (13)  

(13) shows the inverse wavelet transform for discrete wavelets, which we had not yet seen.  

Orthogonality is not essential in the representation of signals. The wavelets need not be orthogonal and 
in some applications the redundancy can help to reduce the sensitivity to noise [She96] or improve the 
shift invariance of the transform [Bur98]. This is a disadvantage of discrete wavelets: the resulting 
wavelet transform is no longer shift invariant, which means that the wavelet transforms of a signal and 
of a time-shifted version of the same signal are not simply shifted versions of each other.  

  

  

5. A band-pass filter 

With the redundancy removed, we still have two hurdles to take before we have the wavelet transform in 
a practical form. We continue by trying to reduce the number of wavelets needed in the wavelet 
transform and save the problem of the difficult analytical solutions for the end.  

Even with discrete wavelets we still need an infinite number of scalings and translations to calculate the 
wavelet transform. The easiest way to tackle this problem is simply not to use an infinite number of 
discrete wavelets. Of course this poses the question of the quality of the transform. Is it possible to 
reduce the number of wavelets to analyze a signal and still have a useful result?  

The translations of the wavelets are of course limited by the duration of the signal under investigation so 
that we have an upper boundary for the wavelets. This leaves us with the question of dilation: how many 
scales do we need to analyze our signal? How do we get a lower bound? It turns out that we can answer 
this question by looking at the wavelet transform in a different way.  

If we look at (5) we see that the wavelet has a band-pass like spectrum. From Fourier theory we know 
that compression in time is equivalent to stretching the spectrum and shifting it upwards:  
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      (14)  

This means that a time compression of the wavelet by a factor of 2 will stretch the frequency spectrum 
of the wavelet by a factor of 2 and also shift all frequency components up by a factor of 2. Using this 
insight we can cover the finite spectrum of our signal with the spectra of dilated wavelets in the same 
way as that we covered our signal in the time domain with translated wavelets. To get a good coverage 
of the signal spectrum the stretched wavelet spectra should touch each other, as if they were standing 
hand in hand (see figure 2). This can be arranged by correctly designing the wavelets.  

  

 
Figure 2 

Touching wavelet spectra resulting from scaling of the mother wavelet in the time domain.  

  

Summarizing, if one wavelet can be seen as a band-pass filter, then a series of dilated wavelets can be 
seen as a band-pass filter bank. If we look at the ratio between the center frequency of a wavelet 
spectrum and the width of this spectrum we will see that it is the same for all wavelets. This ratio is 
normally referred to as the fidelity factor Q of a filter and in the case of wavelets one speaks therefore of 
a constant-Q filter bank.  

  

  

6. Intermezzo: a constraint 

As an intermezzo we will now take a look at an important constraint on our signal, which has sneaked in 
during the last section: the signal to analyze must have finite energy. When the signal has infinite energy 
it will be impossible to cover its frequency spectrum and its time duration with wavelets. Usually this 
constraint is formally stated as  

      (15)  

and it is equivalent to saying that the L2-norm of our signal f(t) should be finite. This is where Hilbert 
spaces come in so we end our intermezzo by memorizing that natural signals normally have finite 
energy.  
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7. The scaling function [7] 

The careful reader will now ask him- or herself the question how to cover the spectrum all the way down 
to zero? Because every time you stretch the wavelet in the time domain with a factor of 2, its bandwidth 
is halved. In other words, with every wavelet stretch you cover only half of the remaining spectrum, 
which means that you will need an infinite number of wavelets to get the job done [8].  

The solution to this problem is simply not to try to cover the spectrum all the way down to zero with 
wavelet spectra, but to use a cork to plug the hole when it is small enough. This cork then is a low-pass 
spectrum and it belongs to the so-called scaling function. The scaling function was introduced by Mallat 
[Mal89]. Because of the low-pass nature of the scaling function spectrum it is sometimes referred to as 
the averaging filter.  

If we look at the scaling function as being just a signal with a low-pass spectrum, then we can 
decompose it in wavelet components and express it like (13):  

      (16)  

Since we selected the scaling function (t) in such a way that its spectrum neatly fitted in the space left 
open by the wavelets, the expression (16) uses an infinite number of wavelets up to a certain scale j (see 
figure 3). This means that if we analyze a signal using the combination of scaling function and wavelets, 
the scaling function by itself takes care of the spectrum otherwise covered by all the wavelets up to scale 
j, while the rest is done by the wavelets. In this way we have limited the number of wavelets from an 
infinite number to a finite number.  

  

 
Figure 3 

How an infinite set of wavelets is replaced by one scaling function. 

  

By introducing the scaling function we have circumvented the problem of the infinite number of 
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wavelets and set a lower bound for the wavelets. Of course when we use a scaling function instead of 
wavelets we lose information. That is to say, from a signal representation point of view we do not loose 
any information, since it will still be possible to reconstruct the original signal, but from a wavelet-
analysis point of view we discard possible valuable scale information. The width of the scaling function 
spectrum is therefore an important parameter in the wavelet transform design. The shorter its spectrum 
the more wavelet coefficients you will have and the more scale information. But, as always, there will be 
practical limitations on the number of wavelet coefficients you can handle. As we will see later on, in 
the discrete wavelet transform this problem is more or less automatically solved.  

The low-pass spectrum of the scaling function allows us to state some sort of admissibility condition 
similar to (6)  

      (17)  

which shows that the 0th moment of the scaling function can not vanish[9]. 

 

Summarizing once more, if one wavelet can be seen as a band-pass filter and a scaling function is a low-
pass filter, then a series of dilated wavelets together with a scaling function can be seen as a filter bank.  

  

  

8. Subband coding 

Two of the three problems mentioned in section 4 have now been resolved, but we still do not know 
how to calculate the wavelet transform. Therefore we will continue our journey through multiresolution 
land.  

If we regard the wavelet transform as a filter bank, then we can consider wavelet transforming a signal 
as passing the signal through this filter bank. The outputs of the different filter stages are the wavelet- 
and scaling function transform coefficients. Analyzing a signal by passing it through a filter bank is not 
a new idea and has been around for many years under the name subband coding. It is used for instance 
in computer vision applications.  
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Figure 4 
Splitting the signal spectrum with an iterated filter bank. 

  

The filter bank needed in subband coding can be built in several ways. One way is to build many band-
pass filters to split the spectrum into frequency bands. The advantage is that the width of every band can 
be chosen freely, in such a way that the spectrum of the signal to analyze is covered in the places where 
it might be interesting. The disadvantage is that we will have to design every filter separately and this 
can be a time consuming process. Another way is to split the signal spectrum in two (equal) parts, a low-
pass and a high-pass part. The high-pass part contains the smallest details we are interested in and we 
could stop here. We now have two bands. However, the low-pass part still contains some details and 
therefore we can split it again. And again, until we are satisfied with the number of bands we have 
created. In this way we have created an iterated filter bank. Usually the number of bands is limited by 
for instance the amount of data or computation power available. The process of splitting the spectrum is 
graphically displayed in figure 4. The advantage of this scheme is that we have to design only two 
filters, the disadvantage is that the signal spectrum coverage is fixed.  

Looking at figure 4 we see that what we are left with after the repeated spectrum splitting is a series of 
band-pass bands with doubling bandwidth and one low-pass band. (Although in theory the first split 
gave us a high-pass band and a low-pass band, in reality the high-pass band is a band-pass band due to 
the limited bandwidth of the signal.) In other words, we can perform the same subband analysis by 
feeding the signal into a bank of band-pass filters of which each filter has a bandwidth twice as wide as 
his left neighbor (the frequency axis runs to the right here) and a low-pass filter. At the beginning of this 
section we stated that this is the same as applying a wavelet transform to the signal. The wavelets give 
us the band-pass bands with doubling bandwidth and the scaling function provides us with the low-pass 
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band. From this we can conclude that a wavelet transform is the same thing as a subband coding scheme 
using a constant-Q filter bank[10] [Mal89]. In general we will refer to this kind of analysis as a 
multiresolution analysis.  

Summarizing, if we implement the wavelet transform as an iterated filter bank, we do not have to 
specify the wavelets explicitly! This sure is a remarkable result[11].  

  

  

9. The discrete wavelet transform 

In many practical applications the signal of interest is sampled. In order to use the results we have 
achieved so far with a discrete signal we have to make our wavelet transform discrete too. Remember 
that our discrete wavelets are not time-discrete, only the translation- and the scale step are discrete. 
Simply implementing the wavelet filter bank as a digital filter bank intuitively seems to do the job. But 
intuitively is not good enough, we have to be sure.  

In (16) we stated that the scaling function could be expressed in wavelets from minus infinity up to a 
certain scale j. If we add a wavelet spectrum to the scaling function spectrum we will get a new scaling 
function, with a spectrum twice as wide as the first. The effect of this addition is that we can express the 
first scaling function in terms of the second, because all the information we need to do this is contained 
in the second scaling function. We can express this formally in the so-called multiresolution formulation 
[Bur98] or two-scale relation [She96]:  

      (18)  

The two-scale relation states that the scaling function at a certain scale can be expressed in terms of 
translated scaling functions at the next smaller scale. Do not get confused here: smaller scale means 
more detail.  

The first scaling function replaced a set of wavelets and therefore we can also express the wavelets in 
this set in terms of translated scaling functions at the next scale. More specifically we can write for the 
wavelet at level j:  

      (19)  

which is the two-scale relation between the scaling function and the wavelet.  

Since our signal f(t) could be expressed in terms of dilated and translated wavelets up to a scale j-1, this 
leads to the result that f(t) can also be expressed in terms of dilated and translated scaling functions at a 
scale j:  
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      (20)  

To be consistent in our notation we should in this case speak of discrete scaling functions since only 
discrete dilations and translations are allowed.  

If in this equation we step up a scale to j-1 (!), we have to add wavelets in order to keep the same level 
of detail. We can then express the signal f(t) as  

      (21)  

If the scaling function 
j,k

(t) and the wavelets 
j,k

(t) are orthonormal or a tight frame, then the 

coefficients 
j-1

(k) and 
j-1

(k) are found by taking the inner products  

      (22)  

If we now replace 
j,k

(t) and 
j,k

(t) in the inner products by suitably scaled and translated versions[12] 

of (18) and (19) and manipulate a bit, keeping in mind that the inner product can also be written as an 
integration, we arrive at the important result [Bur98]:  

      (23)  

      (24)  

These two equations state that the wavelet- and scaling function coefficients on a certain scale can be 
found by calculating a weighted sum of the scaling function coefficients from the previous scale. Now 
recall from the section on the scaling function that the scaling function coefficients came from a low-
pass filter and recall from the section on subband coding how we iterated a filter bank by repeatedly 
splitting the low-pass spectrum into a low-pass and a high-pass part. The filter bank iteration started 
with the signal spectrum, so if we imagine that the signal spectrum is the output of a low-pass filter at 
the previous (imaginary) scale, then we can regard our sampled signal as the scaling function 
coefficients from the previous (imaginary) scale. In other words, our sampled signal f(k) is simply equal 
to (k) at the largest scale!  

But there is more. As we know from signal processing theory a discrete weighted sum like the ones in 
(23) and (24) is the same as a digital filter and since we know that the coefficients 

j
(k) come from the 
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low-pass part of the splitted signal spectrum, the weighting factors h(k) in (23) must form a low-pass 
filter. And since we know that the coefficients 

j
(k) come from the high-pass part of the splitted signal 

spectrum, the weighting factors g(k) in (24) must form a high-pass filter. This means that (23) and (24) 
together form one stage of an iterated digital filter bank and from now on we will refer to the 
coefficients h(k) as the scaling filter and the coefficients g(k) as the wavelet filter.  

By now we have made certain that implementing the wavelet transform as an iterated digital filter bank 
is possible and from now on we can speak of the discrete wavelet transform or DWT. Our intuition 
turned out to be correct. Because of this we are rewarded with a useful bonus property of (23) and (24), 
the subsampling property. If we take one last look at these two equations we see that the scaling and 
wavelet filters have a step-size of 2 in the variable k. The effect of this is that only every other 

j
(k) is 

used in the convolution, with the result that the output data rate is equal to the input data rate. Although 
this is not a new idea, it has always been exploited in subband coding schemes, it is kind of nice to see it 
pop up here as part of the deal.  

The subsampling property also solves our problem, which had come up at the end of the section on the 
scaling function, of how to choose the width of the scaling function spectrum. Because, every time we 
iterate the filter bank the number of samples for the next stage is halved so that in the end we are left 
with just one sample (in the extreme case). It will be clear that this is where the iteration definitely has to 
stop and this determines the width of the spectrum of the scaling function. Normally the iteration will 
stop at the point where the number of samples has become smaller than the length of the scaling filter or 
the wavelet filter, whichever is the longest, so the length of the longest filter determines the width of the 
spectrum of the scaling function.  

  

 
Figure 5 

Implementation of (23) and (24) as one stage of an iterated filter bank.  

  

  

10. Coda 

By now we have managed to reduce the highly redundant continuous wavelet transform as formulated in 
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(1) with its infinite number of unspecified wavelets to a finite stage iterated digital filter bank which can 
be directly implemented on a digital computer. The redundancy has been removed by using discrete 
wavelets and a scaling function solved the problem of the infinite number of wavelets needed in the 
wavelet transform. The filter bank has solved the problem of the non-existence of analytical solutions as 
mentioned in the section on discrete wavelets. Finally, we have built a digitally implementable version 
of (1) without specifying any wavelet, just as in (1). The wavelet transform has become very practical 
indeed.  
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Figure 6 
Some scaling functions (top) and wavelets (bottom) from the biorthogonal Deslauriers-Dubuc family 
(like humans wavelets live in families, but there are also species that live in packs). From left to right: 
(2,2), (4,2), (6,2), (2,4) and (4,4). The first number is the number of vanishing moments of the analyzing 
wavelet (the wavelet that decomposes a signal) and the second number is the number of vanishing 
moments of the synthesizing wavelet (the wavelet that reconstructs the signal). Note that with increasing 
number of vanishing moments (wavelets a, b and c) the wavelet becomes smoother or more regular. The 
same is true for the scaling function.  

Note also that the shape of these wavelets is not the rule. Although there are many wavelets that look 
like this, there are also many wavelets that look completely different. The wavelets shown here are just 
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easy to create.  

  

  

11. Notes  

[1]  This in contrast to [Kai94]. 

[2]  A Dirac pulse is defined as f (t) = 1 at t=0 and f (t) = 0 for all other t. 

[3]  "I am serious, and don't call me Shirley." Leslie Nielsen as Dr. Rumack in the film Airplane! 
(1980). 

[4]  There exist functions of which all moments vanish. An example is the function 

  

for x  0 [Kör96]. 

[5]  The term regularity seems to stem from the definition that a filter is called K-regular if its z-

transform has K zeroes at . In wavelet theory this applies to the scaling filter (which has 
not been mentioned yet) and it is possible only if all wavelet moments up to K-1 vanish [Bur98]. 
The scaling filter is formed by the coefficients h(k) in (17). 

[6]  The CWT behaves just like an orthogonal transform in the sense that the inverse wavelet 
transform permits us to reconstruct the signal by an integration of all the projections of the signal 
onto the wavelet basis. This is called quasi-orthogonality [She96]. 

[7]  Note that this introduction of the scaling function differs from the usual introduction through 
multiresolution analysis. I hope that by doing it this way it will keep the story gripping. 

[8]  When you want to go from A to B you first have to travel half the distance. But before you reach 
this half-way point you have to travel half of half the distance. But before you reach this quarter-
way point you have to travel half of half of half the distance, etc.. In other words, you will never 
arrive in B because you have to travel to an infinite number of half-way points. This is the famous 
dichotomy paradox by Zeno of Elea (approx. 490-430 BC). 

[9]  If the degrees of freedom in a wavelet transform design are not only used on creating vanishing 
moments for the wavelet, but are equally distributed among the scaling function and the wavelet 
to create vanishing moments for both functions, we speak of Coiflets. Coiflets are more symmetric 
than the wavelet transforms known before their introduction (1989). They are named after their 
inventer Coifman [Tia96]. 

[10]  Subband coding is not restricted to constant-Q filter banks. 
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[11]  Since it is possible to implement a wavelet transform without explicitly implementing wavelets, it 
might be a good idea not to use the term wavelet transform at all and just call it subband coding. 
But then again, the Fourier transform can be implemented without explicitely implementing 
Fouriers, so why bother? 

[12]  To scale and translate suitably, replace 2jt in (18) and (19) by 2jt-k. 
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Internet resources 

After reading this tutorial (or one of the others) you may have one or more questions. You can try asking 
me, but you can also try your luck at the Wavelet Forum. This will probably get you a better and more 
up to date answer than from me and also probably quicker than me.  

Besides traditional references (i.e. on paper) there are many Internet resources that deal with wavelets. 
Here I list a few that have proved to be useful. With these links probably every other wavelet related site 
can be found. Keep in mind however that this list was verified for the last time in July 1999.  

� The Wavelet Digest, a monthly electronic magazine currently edited by Wim Sweldens, is a 
platform for people working with wavelets. It contains announcements of conferences, abstracts of 
publications and preprints and questions and answers of readers. It can be found at and it is the 
site for wavelets. 

� Mathsoft, the makers of Mathcad, maintain a wavelet site called wavelet resources, which 
contains a huge list of wavelet-related papers and links. 

� Rice University, the home of Burrus [Bur98] et al, keeps a list of publications and makes available 
the Rice Wavelet Toolbox for MatLab. 

� The Katholieke Universiteit of Leuven, Belgium, is active on the net with wavelets, publications 
and the toolbox WAILI. 
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� Amara Graps maintains a long list of links, publications and tools besides explaining wavelet 
theory in a nutshell. 

� There is a real lifting page, dedicated to Liftpack, a lifting toolbox. 

� Finally I would like to mention an interesting tutorial aimed at engineers by Robi Polikar from 
Iowa State University. 
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