Free vibration of a beam as
compared to a taut cable
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A “cable” in this context implies no
stiffness; the restoring force comes
from the fact that the cable is in tension
(assumed constant) T.
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A “beam” on the other hand
possesses stiffness, El, but has
no tension.



Free vibration of a beam as
compared to a taut cable

Many structural members in fact
possess a combination of tension
(compression) and stiffness.



Free vibration of a beam as
compared to a taut cable
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u(x,t)

Recall that the vibrating
cable or string entailed a
second "independent
variable" besides time t.

I, 11

This is denoted as "x".



Free vibration of a beam as
compared to a taut cable
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u(x,t)

Recall that the vibrating
cable or string entailed a
second "independent
variable" besides time t.

I, 11

This is denoted as "x".

So the deflection is u(x,t).



Free vibration of a beam as
compared to a taut cable

--== neutral axis

A A
al=



Free vibration of a beam as
compared to a taut cable

--== neutral axis
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With the beam, we keep
track of the deflection
of the neutral axis.



Free vibration of a beam as
compared to a taut cable

--== neutral axis

y(x,t)

In this case we denote
the deflection of the
neutral axis by y(x,t).



Comparing the governing
partial differential equations




Comparing the governing
partial differential equations
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u(x t)

Consider a differential
element of the cable, dx.




Comparing the governing
partial differential equations
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Consider a differential Also consider a
element of the cable, dx. differential element dx

of the beam.



Comparing the governing
partial differential equations
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“(X t y(x,t)
Consider a differential Also consider a
element of the cable, dx. differential element dx

of the beam.

In both cases neglecting gravity, we consider
a free body diagram of the two elements.



Comparing the governing
partial differential equations
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In both cases neglecting gravity, we consider
a free body diagram of the two elements.




Free body diagrams
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Free body diagrams
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Free body diagrams
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Free body diagrams
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Linearizing about small 6
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s~

T,/9+d9

= (Mm/L)dXx aazt?
= _T 5|n(9) +T sin(6 + 90) (1 \/j

~ T30 = ToY
Taax




Finally, for the cable




Finally, for the cable
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du _ -.du
3t ~ 9 3¢

"wave equation” w/
boundary conditions:
u(0,t)=u(L,t)=0




Next, turning to the beam:
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du _ -.du
3t ~ 9 3¢

"wave equation” w/
boundary conditions:
u(0,t)=u(L,t)=0




Next, turning to the beam:

]w/ﬁr[

azu — =2 il U(X,t)
or - 9 ox:
"wave equation” w/
boundary conditions:
u(0,t)=u(L,t)=0
] ( V+ab
y Y




Next, turning to the beam:

06



Next, turning to the beam:
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Next, turning to the beam:

P3O = 9x 9
U
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Next, turning to the beam:

P36 = X

e = (W+P)36 - P30
P30




Next, turning to the beam:

P36 = X
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Next, turning to the beam:

P36 = X

e = (W+P)36 - P30
P30




Next, turning to the beam:

P36 = X

beam cross section




Next, turning to the beam:

beam cross section
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Next, turning to the beam:

beam cross section
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Next, turning to the beam:

beam cross section
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Next, turning to the beam:

beam cross section
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Next, turning to the beam:

beam cross section ﬁl
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beam cross section

But note that: v =
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X =
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Putting all of this together:




Putting all of this together:
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If the beam’s cross section is the

same across Its length, such that
El is a constant fordxall X, then,
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a’ = EIL/m



Because we have a fourth spatial

derivative, we look for four
boundary congjxitions
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where

a’ = EIL/m



Two of these are called "geometric
boundary conditions”. They pertain to
zero displacement at the two extreme

ends:

y(0,6)=0

y(L,©)=0



The other two are identified with zero
bending moment, considered “natural

boundary conditions”, at each of the
two ends. They may be written:

M(0,t)=EIy"(0,t)=0

M(L,t)=EIy"(L,t)=0



or.

y"(0,t)=0

y (L,t)=0




Our two systems are
governed according to:

e TTLLTL Ly
u(x,t) t? xt Y(xt)
" a’ = EIL/m
a’ =TL/m y(0,£)=0 y"(0,£)=0
u(0,t)=u(Lt)=0 YLY=0  yrLp=0



HW 37 Q: But how do we get »??

Due Dec. 5, 2005 A: Look at X(x).
Problem A: We consider the ]ﬁﬁ & fll A

question of solving for the ey S T Loy
natural frequencies of the taut| 2au_ ,.3u
cable and the simply
supported Euler-Bernoulli
beam. Assuming for each of
the two 0.d.e.s on the right a o' + 2% =)
solution form X(x)=Ae",
determine:

(a) A characteristic polynomial of second degree whose roots
in r (denoted here as

r,=iw/a, r,=-iw/a) admit a solution to the taut cable’s (lower left
of the two boxes) o.d.e.

(b) A characteristic polynomial of fourth degree whose 4 roots

in r admit a solution to the simply supported beam’s o.d.e.
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Problem B: Turning our attention to the beam: We
may write the four roots of the characteristic

equation: r1=sqgrt(w/a), r2=- sgrt(w/a), r3=i sqrt(w/a),
r4=-i sqrt(w/a). Show that the general solution:

X(x)
= A,exp(r,X) + A,exp(ryx) + Asexp(r3x) + A,exp(r4x)

may also be written

X(x) = C, cosh[sqrt(w/a)x] + C, sinh[sqrt(w/a)x] +
C, cos[sqrt(w/a)x] + C, sin[sqrt(w/a)x]



Let the dependent variable,
y or u, be X(x)T(t)

where

a’ = EIL/m
y(0,£)=0  M(0,t)=Ely"(0,t)=0

y(LH)=0  M(L,t)=Ely"(L,t)=0



Let the dependent variable,
y or u, be X(x)T(t)

where

a’ = EIL/m
y(0,£)=0  M(0,t)=Ely"(0,t)=0

y(LH)=0  M(L,t)=Ely"(L,t)=0



Let the dependent variable,
y or u, be X(x)T(t)

where

a’ = EIL/m
y(0,£)=0  M(0,t)=Ely"(0,t)=0

y(LH)=0  M(L,t)=Ely"(L,t)=0



Let the dependent variable,
y or u, be X(x)T(t)

2 4
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where
4 2
a’ = EIL/m X - ZX =0
y(0,t)=0 M(0,t)=EIy"(0,t)=0 X(0)=0

y(x,t) = § X(L)=0
y(LH)=0 M(Lbt)=Ely"(Lt)=0 X(X)T(t)/ X"(0)=0
X"(L)=0
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X(x) = C, cosh[sqrt(w/a)x] + C, sinh[sqrt(w/a)x] +
C, cos[sqrt(w/a)x] + C, sin[sqrt(w/a)x]
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X(0)=0

X(x) = C, cosh[sqrt(w/a)x] + C, sinh[sqrt(w/a)x] + X(L)=0
C, cos[sqrt(w/a)x] + C, sin[sqrt(w/a)x]  X"(0)=0

X"(L)=0
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X(0)=0
X(x) = C, cosh[sqrt(w/a)x] + C, sinh[sqrt(w/a)x] +
C, cos[sqrt(w/a)x] + C, sin[sqrt(w/a)x]

C1+ C3= 0
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X(x) = C, cosh[sqrt(w/a)x] + C, sinh[sqrt(w/a)x] +
C, cos[sqrt(w/a)x] + C, sin[sqrt(w/a)x]  X"(0)=0

C1+ C3= 0
C1'C3=O
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X(x) = C, cosh[sqrt(w/a)x] + C, sinh[sqrt(w/a)x] +
C, cos[sqrt(w/a)x] + C, sin[sqrt(w/a)x]  X"(0)=0




4 '{2
il'_;f‘-*;—}z-x = ()

X(x) = C, cosh[sqgrt(w/a)x] + C, sinh[sqgrt(w/a)x] + X(L)=0
C, cos[sqrt(w/a)x] + C, sin[sqrt(w/a)x]

C,sinhfo/a’l + Cysinjo/aL =0
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X(x) = C, cosh[sqrt(w/a)x] + C, sinh[sqrt(w/a)x] +
C, cos[sqrt(w/a)x] + C, sin[sqrt(w/a)x] o
X"(L)=0
C,sinhfo/al + Cysinjo/aL =0
[o/a][ Cysinho7a’l — Cysinfo/aL ] =0
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X(x) = C, cosh[sqrt(w/a)x] + C, sinh[sqrt(w/a)x] +
C, cos[sqrt(w/a)x] + C, sin[sqrt(w/a)x]

sinh{@7aL  sinf/aL {Cz} _ {0}
sinhfo/a L -sinfo/a’L Cy 0

X"(L)=0




To avoid the trivial solution,

select ® such that:

sinhf@/aL  sindo/aL

sinh{n/a’ L —sin.]cTJ_7a“|__
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To avoid the trivial solution,

select ® such that:

sinhf@/aL  sindo/aL

sinho/a L sinjo/al
sinh{®/a’ L -sinjo/a’ L
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To avoid the trivial solution,
select ® such that:

sinho/a L sinjo/al
sinh{®/a’ L -sinjo/a’ L

2 sinhf®/@aL sinjo/aL=0




For illustration take: a=1 L=1
H
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To avoid the trivial solution,
select ® such that:

sinho/a L sinjo/al
sinh{®/a’ L -sinjo/a’ L

2 sinhf®/@aL sinjo/aL=0




For illustration take: a=1 L=1
H
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To avoid the trivial solution,
select ® such that:

2 sinhf®/@aL sinjo/aL=0

A SinV@' sinhV@'
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For illustration take: a=1 L=1

Either of the previous
equations can be applied to
relate C, and C,:

C,sinhfo/al + Cysinjo/aL =0
[w/a][ C,sinh{m/a’L — Cysinfo/al ] =0
A sin\(_‘ sinhV@'

é{ : A >
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For illustration take: a=1 L=1

Let's use the first of the two
with the first natural
frequency:

C,sinh{9.8370+ C4sin{5.870=0

A SinV@' sinhV@'
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For illustration take: a=1 L=1

1 i
Let's use the first of the two

with the first natural
frequency:

0
C,sinh{3.870 + C4si/n.m%]= 0



For illustration take: a=1 L=1

Let's use the first of the two
with the first natural
frequency:

0
C,sinh{3.870 + C4si/n.m%]= 0

I.I C2= 0



For illustration take: a=1 L=1

Let's use the first of the two
with the first natural

frequency:
0
C,sinh{9.870°+ Cﬁ}ﬂ@% 0

I.I C2= 0

X(x) = C, cosh[sqrt(w/a)x] + C, sinh[sqrt(w/a)x] +
C, cos[sqrt(w/a)x] + C, sin[sqrt(w/a)x]



For illustration take: a=1 L=1

Let's use the first of the two
with the first natural

frequency:
0
C,sinh{9.870°+ Cﬁ}ﬂ@% 0

I.I C2= 0

X4(x) = C,sin{9.870 X



For illustration take: a=1 L=1

Let's use the first of the two
with the first natural
frequency:

recall: y(x,t)=X(x)T(t)
T(t)=c,cos @t + d,sinM4t

X4(x) = C,sin{9.870 X



For illustration take: a=1 L=1

Let's use the first of the two
with the first natural
frequency:

recall: y(x,t)=X(x)T(t)
T(t)=c,cos @t + d,sinM4t

1
X4(x) = S‘Z:ﬁin 9.870 X



y(x,t)

recall: y(x,t)=X(x)T(t)
T(t)=c,cos @t + d,sinM4t

1
X4(x) = S‘Z:ﬁin 9.870 X



y(x,t)

recall: y(x,t)= >, )(i(>~<)'l'i (t)
T.(t)=c,cos @t + d.sin®,t



y(x,t)

recall: y(x,t)= >, )(i(>~<)'l'i (t)
T.(t)=c,cos @t + d.sin®,t
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The simply supported beam turns
out to have the same mode shapes
as the taut cable.
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For a beam having a different type
of support, this is not the case.



For a beam having a different type
of support, this is not the case.
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Cantilever beam w/ pin support at right
end: X(0)=0; X’(0)=0; X(L)=0; X”(L)=0.




Fourth natural frequency
is 104.25 s
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Cantilever beam w/ pin support at right
end: X(0)=0; X’(0)=0; X(L)=0; X”(L)=0.
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Our two systems are
governed according to:

e TTLLTL Ly
u(x,t) t? xt Y(xt)
" a’ = EIL/m
a’ =TL/m y(0,£)=0 y"(0,£)=0
u(0,t)=u(Lt)=0 YLY=0  yrLp=0



Consider the vibrating cable
on the left

azu _ a2 azu where
ot ox? )
where a = EIL/m
a’ = TL/m y(0,£)=0 y"(0,£)=0
u(0,t)=u(L,t)=0 y(LH=0  y 1, t)=0



Fourth natural frequency
is 104.25 s
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Cantilever beam w/ pin support at right
end: X(0)=0; X’(0)=0; X(L)=0; X”(L)=0.
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First two mode shapes
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First two mode shapes

\4

Cantilever beam w/ pin support at right
end: X(0)=0; X’(0)=0; X(L)=0; X”(L)=0.




Consider the vibrating cable
on the left

Initial conditions are comprised

]m[ of a given u(x,0) and an
X [ assumption of zero initial

u(x.t) velocity, i.e. u,(x,0)=0.

S-S M\[

where

a’=TL/m

u(0,t)=u(L,t)=0



Consider the vibrating cable
on the left

Initial conditions are comprised

]m[ of a given u(x,0) and an
X [ assumption of zero initial

velocity, i.e. u,(x,0)=0.

u(x,t)
du _ 5:9u
ot? Jx? ]. [
a’=TL/m

u(0,t)=u(L,t)=0



Consider the vibrating cable
on the left

Initial conditions are comprised
]m[ of a given u(x,0) and an
X [ assumption of zero initial
u(x.t) velocity, i.e. u,(x,0)=0.
du _ 3’ du
ot? 1% ]. [
We assumed a solution:

u(x,t)=X(x)T(t)

T(t)=c cos o,t + d sino,t
X(x) = sin nTTXx/L



Consider the vibrating cable
on the left

Initial conditions are comprised
]m[ of a given u(x,0) and an
X [ assumption of zero initial
u(x.t) velocity, i.e. u,(x,0)=0.
du _ 3’ du
ot? 1% ]. [
We assumed a solution:

u(x,t)=X(x)T(t)

T(t)=c cos o,t + d sino,t
X(x) = sin nTtx/L n=1,23..



Consider the vibrating cable
on the left

Initial conditions are comprised
]m[ of a given u(x,0) and an
X [ assumption of zero initial
u(x.t) velocity, i.e. u,(x,0)=0.
du _ 3’ du
ot? 1% ]. [
We assumed a solution:

u(x,t)=X(x)T(t)

T.(t)=c,cos ot + d_sino,t
X.(X) = sin n7TTXx/L n=1,2, 3...



Consider the vibrating cable
on the left

Initial conditions are comprised

]m[ of a given u(x,0) and an
X [ assumption of zero initial

u(x.t) velocity, i.e. u,(x,0)=0.

du _ 5:9u
ot? Jx? ]. [

Due to linearity, superposition:
u(x,t)= X (T,

T.(t)=c,cos ot + d_sino,t
X.(X) = sin n7TTXx/L n=1,2, 3...




]-.._—__—/T\[ Think of our init.
X [ cond'n: u(x,0)

u(x,t)
du

_ ~20U
ot~ 94 dx: ]M\[
Due to linearity, superposition: X

u(x, b= X 0T,

T.(t)=c,cos ot + d_sino,t
X.(X) = sin n7TTXx/L n=1,2, 3...




u(x,0)= Xc,sin nmx/L
— %:C“ X“(x)

]-.._—__—/T\[ Think of our init.
X [ cond'n: u(x,0)

u(x,t)
du

_ ~20U
ot~ 94 dx: ]M\[
Due to linearity, superposition: X

u(x, b= X 0T,

T.(t)=c,cos ot + d_sino,t
X.(X) = sin n7TTXx/L n=1,2, 3...




u(x,0)= 2 ¢ Xx)



Y(Xf O) = %: o% Xn(x)
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Final Monday, December 12, 2005,
Room: 141 DeBartolo,
Time: 1:45-3:45 PM.

8 problems

Please bring:
1. 3 cheat sheets
2. calculator
3. pencils
4. scratch paper

It is formatted like the midterms: eight problems
total; 15 minutes/problem.
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