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It is a challenge to find interesting and realistic projects where numerical methods can be used to
enhance student understanding of physical phenomena. We present such a project in which a group
of students used numerical methods to analyze the physics of the rainbow. The project is suitable for
students in an undergraduate physics course on the basic principles of geometrical optics. The
central part of this paper is written by a group of students, and the introduction and discussion are
written by their teacher. In this way both the students’ and teacher’s perspectives on using numerical
methods are presented. © 2009 American Association of Physics Teachers.
�DOI: 10.1119/1.3152991�
I. INTRODUCTION

During the past 50 years or so, computers have been used
to solve real problems in physics. In the early days of com-
puting, students only used numerical methods at the graduate
level. However, with the introduction of personal computers
about 20 years ago, the situation has changed.

For about 10 years, physics teachers developed programs
that their students could use to do numerical experiments.
These programs can be useful pedagogical tools, but they are
usually not aimed at developing students’ skills in solving
problems numerically.

For the past 10 years or so, universities offered separate
courses in computational physics in order to teach students
how to solve physical problems numerically. These courses
are very useful and there are excellent textbooks available.1

Computational physics can be used as a tool for calcula-
tions and/or as a tool for learning and gaining an understand-
ing of physics. A combination of these two objectives seems
to be most fruitful. Gould et al.2 developed an open source
physics library in JAVA to ease students’ programming and
wrote several books that show how to use numerical methods
in a wealth of examples in physics.

At the University of Oslo, the project “Computers in Sci-
ence Education” was established some years ago to increase
the use of numerical methods in science education.3 During
the first semester the students learn basic programming in a
dedicated course for students in natural science disciplines
with significant mathematics components. Many program-
ming tasks in this course are taken from mathematics and
physics. In the following, the strategy given in Ref. 2 is used
not only in a single, dedicated course but also in almost
every physics course. An overall better physical understand-
ing is the motivation for our “distributed approach.” In addi-
tion, we offer dedicated high level courses in computational
physics. For various reasons, we chose to use PYTHON and
MATLAB as the programming environments for the basic
courses. We introduce C++ �and PERL and FORTRAN� in the
dedicated upper level computational physics courses and in
the graduate courses.

The use of numerical methods in physics education is ben-
eficial in several respects. Physics students acquire a skill
that they will use frequently after they graduate. But even
while they are studying, there are numerous positive side
effects of using numerical methods in physics courses. We

can often easily extend a problem from a standard textbook
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problem to more realistic ones. In this way the problem be-
comes more interesting and fun for students and teacher.
Second, the underlying physics is often more apparent when
we solve a problem numerically. The main physical relation
is crucial, as well as the initial and boundary conditions. The
focus can be on the main principles, instead of on the solu-
tion itself.

It is in this context that the present work was initiated. The
work we will discuss in this paper is based on a student
project undertaken during the last half of the second year out
of a three year undergraduate program. The four students
involved worked all day for 5 days, amounting to approxi-
mately 40 h each, a total of 160 h. The assignment was short:
“calculate the rainbow using geometrical optics and the dis-
persion relation of water.” It was not stated that numerical
methods should be used. The students started by first under-
standing the physics behind the problem and which equa-
tions they needed to solve and interpret. They developed the
necessary computer program along with their investigation
of how the system behaved and wrote an extensive report. In
Sec. II the students described how working with this problem
helped them achieve a better understanding of the phenom-
ena.

II. THE STUDENTS’ DESCRIPTION OF THEIR
WORK WITH THE PROJECT

We started out with the law of reflection, Snel’s law of
refraction, and some geometrical considerations. Fresnel’s
equations of transmission and reflection coefficients were ex-
pected to play an important role in describing the intensity of
the light at different angles of deflection.

We approached the problem by sketching the transmission
of light rays through a raindrop using the law of reflection
and Snel’s law of refraction to find the path of the rays
through the drop. To do so, we needed to make some as-
sumptions. To apply geometrical optics, we assumed that
raindrops are spherical. We approximated the incident rays as
being parallel, effectively assuming that the Sun is infinitely
far away. We needed to consider that light is not really de-
scribed by rays, but are waves. We assume that the raindrops
are sufficiently large compared to the wavelength. This as-
sumption allows us to neglect the curvature of the raindrop at
the points of transmission and reflection, which, in turn, al-
lows the use of laws for reflection off and refraction through

flat surfaces. We used Fresnel’s equations to calculate the
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intensity of the light transmitted compared to the light re-
flected at various positions along the drop surface. When we
treated the intensity of the light with Fresnel’s equations, we
assumed that the intensity of the light is not reduced as long
as the light propagates in the same medium. Also, we re-
stricted our model to unpolarized incident light.

We started our project by considering the first order rain-
bow, in which the light undergoes one reflection inside the
raindrop. The extension to zeroth and second order rainbows
was treated later.

Although the incident light rays are parallel, the rays
emerging from the raindrop are not. In Fig. 1 one light ray is
given for the case that the ray hits the drop at a point where
the angle of incidence is � �the angle of incidence will de-
pend on where the ray hits the drop, as the incoming rays are
parallel�. The ray is refracted into the drop, reflected from the
back surface, and refracted on its reentry into air. This par-
ticular ray leaves the drop at an angle � relative to the direc-
tion to the sun, which is parallel to the incoming ray. Rays
that hit a raindrop at different points of incidence, and thus
with different angles of incidence, will in general be de-
flected with different values of �.

The incident light is a combination of all wavelengths �,
each with a different index of refraction n�; rays enter at
every angle �. The composition of light at each value of � is
given by an integral over all � and all �. A derivation of
��� ,n�� for a single ray follows.

A ray that enters the raindrop at a point corresponding to
the angle of incidence � is refracted into the angle � �defined
in Fig. 1�,

� = arcsin�nair sin �

n�
� . �1�

The refracted light travels through the raindrop in a straight
line and is reflected at the back side. The angle of incidence
of light at the back is � and so is the angle of reflection at this
point. The light then travels through the raindrop in another
straight line, is incident at the angle �, and is refracted into
the angle �. The total deflection of the light � is �see Fig. 1�

� = 4� − 2� . �2�

If we substitute the value of � given by Eq. �1� and set nair
=1 for simplicity, we obtain an expression for the deflection
of rays that are reflected once,

���,n�� = 4 arcsin� sin �� − 2� . �3�

Fig. 1. Illustration of the path of a light ray through a raindrop, defining the
angles �, �, and �.
n�
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Once Eq. �3� was established, elementary numerical meth-
ods were invoked to visualize it. Figure 2 shows the deflec-
tion � of light of different wavelengths as a function of �.
Figure 2 contains four curves corresponding to different in-
dices of refraction for different wavelengths of the incident
light.4

The peaks in Fig. 2 suggest that the position and appear-
ance of rainbows depend on at least two effects. First, there
is a maximum angle of deflection, which depends on the
wavelength of the incident light. Second, the intensity of the
deflected light is higher around the maximum angle of de-
flection. The first of these observations can be shown using
Eq. �3� directly. The second observation is suitable for ana-
lytical and numerical analysis.

Figure 2 reveals that light with different wavelengths may
emerge at the same angle �. At �=30°, for instance, we
observe light that entered raindrops at ��33° and ��81°.
For this choice of �, all wavelengths will contribute roughly
equally, thus resulting in white light. To study quantitatively
the composition of light at a given �, we discretized the
�-axis and calculated � at each discretized value of �. We
made a histogram of all the calculated �-values by dividing
the �-axis into many small intervals �� �as shown in Fig. 3�.
This histogram represents a numerical integration and is pro-
portional to the intensity of light emerging in the various

Fig. 2. The angle of deflection � as a function of the angle of incidence �.
The curves correspond to the wavelengths �top to bottom�: 650, 550, 475,
and 425 nm. The dots indicate the maximum deflection of each wavelength.

∆φP

Fig. 3. The idea of our integration method. Light emerging in the interval
�� is dominated by purple. The contribution from other wavelengths is
much smaller because the purple light will have contributions from an an-
gular interval ��P that is much larger than the corresponding intervals for
light of other colors �red shown as an example�, and therefore ��P contains

more integration points.
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�-directions. The procedure must be repeated for each wave-
length. This numerical integration is one of the key chal-
lenges of our approach to the problem.

The bin size �� must be chosen sufficiently small so that
we end up with a sufficiently large number of calculated
�-values within a chosen interval ��. If not, the accuracy of
the calculation will be low. We should also carefully consider
the placement of the interval in which the maximum value of
� occurs. If the maximum is at the middle of a �-interval, the
upper half of the interval will be empty, causing an error
relative to the previous intervals.

The spatial extension �corresponding to the amount of the
incoming light� of an interval of size �� depends on the
angle � at which it is centered. An interval near �=0 will
intercept a lot of light, while an interval of the same angular
extension, but located near �=� /2, will hardly intercept any
light at all. If h is the height of the interval �h is measured in
the direction normal to the incoming light�, h is given as

h � r cos����� ��� � 1� , �4�

where r is the radius of the drop, as illustrated in Fig. 4. We
will relate the outgoing intensity to the total intensity inter-
cepted by the drop so that the quantity of interest is h /r. At
this point, Fresnel’s equations can be omitted for simplicity,
but only a few lines of code are required to implement them.
�As mentioned, Fresnel’s equations give a detailed descrip-
tion of the intensity distribution between reflected and re-
fracted light beam at various angles of incidence.� If they are
taken into account, the suggested integration scheme yields
Fig. 5.

In brief, the used integration scheme consists of dividing
the �-axis into small intervals �� and choosing points in �
spaced evenly by ��. For every chosen point in �, the cor-
responding value of � is computed. The reflected intensity is
weighed by the amount of light entering the drop at the angle
�, given by Eq. �4�, and by Fresnel’s equations. The total
number of contributions to each interval �� is summed. The
resulting histogram represents a density distribution of the
reflected light. When �� is decreased, the density distribu-
tion converges to the sought relation for the reflected inten-
sity at angle �.

Fig. 4. �Color online� Illustration of how the spatial extension h and, con-
sequently, the amount of incoming light in the interval �� depend on the
angle �.
Both the angles of deflection at which a given color domi-
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nates and the total angular extension of the rainbow can be
deduced from Fig. 5. Figure 5 also explains the brightness of
the area “inside” the rainbow.

The intensity of the light that is reflected by one drop is
quite low. To see a rainbow, it is important to add light from
many drops. Fortunately, many drops can contribute. All sun
illuminated drops along a given line of sight from the ob-
server will contribute similarly, irrespective of their distance
to the observer.

Our assumptions and the physical principles we applied
are inherent to rainbows and would be part of any treatment
of the rainbow. Once Eq. �3� was established, the benefits of
a numerical approach became clear. Up to this point in our
thinking, we had not considered the use of computers. Look-
ing at Eq. �3� we were at a loss as how to treat this math-
ematically to obtain an expression that described the rain-
bow. We could differentiate Eq. �3� and extract the extremum
values, but we were not sure what this would tell us. We
decided to plot the function to obtain a feel for its behavior.

The plot we obtained is shown in Fig. 2. We first noticed
that the maxima are located at different values of � and �.
The significance of this fact was less apparent. From looking
at the graph, we realized that the flattening at the top of the
curves mean that the intensity of light of a given wavelength
emerging in an interval �� would be higher near the maxi-
mum value of �. But we were not sure whether this effect
was important enough to explain the separation of the colors.

Therefore, we wanted to investigate the significance of
this “piling up.” The integration scheme we described previ-
ously gave Fig. 5. Looking back, we can say that it was at
this point that we understood the rainbow. Figure 5 shows
that the peaks are so dramatically intense and narrow com-
pared to the values for other angles. Thus, the calculations
explained why the rainbow is so distinct as we observe in
reality. Because we had chosen wavelengths at each end of
the visible spectrum, we also obtained the angular extension
of the first order rainbow.

It is straightforward to modify the algorithm to calculate
the second order rainbow. Our results explain why the order
of the colors is reversed and that the enhanced light intensity
on one side is now located on the other side. Thus, it explains
the Alexander band.6 The relative intensity �compared to the
first order bow� is also easily obtained.

Fig. 5. �Color online� The intensity of the light emerging at different angles
of deflection. An intensity of 100% corresponds to all light of a given wave-
length entering the upper half of the raindrop being reflected into a single
outgoing ray. �� is set to 0.042°, one part in a thousand of the maximum
angular deflection of light entering the raindrop. �� is set to 0.00090°, one
part in a hundred thousand of a quarter circle.
When reviewing the outcome of the project, we were in-
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spired and happy to have managed to solve the problem of
calculating the rainbow from first principles without any
guidelines. The description of the rainbow involves several
kinds of problems, which are manageable by second year
undergraduate students. We experienced how useful it is to
be capable of writing our own small programs. Viewed the
other way around, the use of computers helped our under-
standing of the physics. Particularly enlightening was the
creation and evaluation of Fig. 5.

III. DISCUSSION

The four students could have followed an analytical analy-
sis similar to the one done by Walker.5 In this case the nu-
merical analysis is considerably simpler than the analytical
approach. Numerical methods can often be more intuitive for
undergraduate students than analytical approaches. It is also
easy to discover the significance of different assumptions and
relations by simple modifications of numerical algorithms.
Furthermore, after one has written a program to solve a sim-
plified version of the problem, it is often straightforward to
include a more detailed description of the physics involved.
For example, it is simple to implement the use of Fresnel’s
equations if they were not included initially. It would also be
simple to modify the program to handle the polarization of
light. It would even be straightforward to implement the
changes due to the angular size of the sun. Such an imple-
mentation is far more complicated in an analytic approach.

Many textbooks give figures like Fig. 3. Such figures are

intended to illustrate why the rainbow appears. However, the
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understanding gained from the generation of Fig. 5 from Fig.
2 is not easily obtained without a hands-on approach.

The programming background of the students doesn’t
have to be very extensive to solve a problem like the one we
have presented here, but the students need to know the basic
elements of scientific programming, including the use of
variables, arrays, loops, and logical statements. They also
need to know how to visualize their data. The program our
students wrote to solve this problem was relatively easy to
understand. Most students, provided that they have the rel-
evant physics and programming background, should be able
to write a program to solve this problem “from scratch.”
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