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Formulas are derived for the energy, momentum, and angular momentum transmitted by
waves of arbitrary shape in an inextensible string and by pure transverse waves in a suitably
extensible string. The analysis is based on Tait’s procedure of viewing the wave from a
moving frame of reference, and its application to the inextensible string, at least, is simple
enough for use in elementary physics courses. The same method is used to find the elastic
condition on an extensible string necessary for the propagation of mutually coherent shape
and density waves. It is shown that the perfect transverse string waves referred to in
textbooks can only be propagated in strings of the ideal Slinky spring type, and that they are

incapable of carrying net momentum.

I. INTRODUCTION

Typical elementary textbooks introduce the subject of
wave propagation with the picturesque example of a
traveling deformation in a string. Many authors correctly
point out that the string wave carries energy with it, and
then proceed to calculate the rate of energy transfer in the
limited context of a traveling sinusoid of small amplitude
or of a more general, but still small, solution of the ordi-
nary wave equation. In contrast, the possibility of
momentum transport by the string wave is rarely men-
tioned, and there is a remarkable lack of elaboration of
that matter at the elementary level. Even among the more
advanced texts I know of only one! in which an analysis
of the problem is attempted. Information is not quite so
hard to find in the more practical area of momentum
transfer by an acoustical wave in a fluid. French? has giv-
en some space to a qualitative discussion of that topic in
one of his introductory texts, for instance. Any quantita-
tive treatment inevitably gets postponed to works intended
at least for the junior—senior level,** however, and nowa-
days few students—even physics majors—are likely to see
it at all.

Foreseeing the introduction of the concepts of elec-
tromagnetic radiation pressure and the interrelation of the
momentum, angular momentum, and energy carried by a
photon or by a Schrédinger wave, a physics teacher might
find it worthwhile to show that analogous properties be-
long to waves in general or to the string wave in particu-
lar. I propose the development in the following two sec-
tions of this paper as a suitable means to the latter end.
Section II, which deals with the basic method of attack
and its application to the plane-polarized wave, could be
presented to students who have developed some physical
insight but have not yet mastered college-level mathemat-
ical skills, since it makes no explicit use of the wave
equation, nor even of formal calculus. Section III depends
on a slightly more sophisticated knowledge of vector
algebra and coordinate systems for the description of a
more general deformation in a string and the matter of
angular momentum transport. The model I have adopted
for the string in both sections is not new but it is a little
out of the ordinary, and as a result my formula for the
rate of energy transfer differs significantly from the tradi-
tional one. 1 have attempted to resolve the differences in
Sec. IV, and to point out some ambiguities in the stan-
dard treatment; a little calculus has had to be used for
those purposes.
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II. BASIC PROCEDURE AND ITS APPLICATION
TO PLANE-POLARIZED STRING WAVES

An appropriate place to begin a survey of the dynami-
cal properties of waves is the imaginative derivation, ap-
parently originated by Tait,* of the propagation velocity
of a string wave. The derivation is paraphrased in a
number of modern texts,® but seldom, if ever, is it cred-
ited with the generality it seems to have in fact.® In sub-
stance, it examines the dynamics of curvilinear motion of
a segment of the string as seen in a reference frame mov-
ing with the wave propagation velocity c. In that frame
every segment is moving backward along the waveform
with speed ¢, and is constrained to follow the local curva-
ture of the waveform by the resultant of the tensile forces
acting on its ends. When that resultant is identified with
the centripetal force on the segment, the familiar relation

= (Ty/0)'/? (1)

follows, where T is the tension and o, the linear density.
Since the orientation, length, and instantaneous radius of
curvature do not appear in this exact result, the latter two
quantities could be arbitrarily small, so that Eq. (1) car-
ries the implied applicability to an arbitrary waveform. As
for the properties of the string, it must be assumed to be
perfectly flexible. In the simplest situation we can sup-
pose it to be inextensible, with the tension T, supplied by
stretched springs or suspended weights at the remote
ends; those devices will be in a state of elevated potential
energy after the deformation has been introduced. A
string with longitudinal elasticity may be used, but in that
event the corresponding excess potential energy must be
distributed uniformly along the entire length of the string,
including that additional length needed to construct the
waveform. In neither case is the potential energy of de-
formation propagated with the wave in its entirety. By
keeping T, and o, uniform along the deformed string, we
automatically exclude any tangential acceleration of the
string segment in the moving frame of reference and pro-
vide for a waveform that does not change in time. An al-
ternative model will be discussed in Sec. IV.

It will be convenient to formulate the problem of
energy and momentum transport in a coordinate system
whose xy plane is perpendicular to, and whose z axis
coincides with, the undeformed length of the string. For
the time being we can examine the case in which the

Copyright © 1976 American Association of Physics Teachers 94



S

Fig. 1. A possible waveform in an inextensible string, as viewed in a
reference frame moving in the axial (z) direction with the propagation
speed . An enlargement of a typical string segment at an instant during
the passage of the wave is shown at upper left. Note that there is no
such segment whose lab-frame velocity v has a component in the nega-
tive z direction; all momentum is carried forward.

propagating deformation is confined to a plane. To avoid
the necessity of reformulating the results subsequently in
the more general three-dimensional problem, we shall use
cylindrical coordinates, with the plane of polarization at
constant angle ¢ with the xz plane and the instantaneous
position of any particle in the string described by its
coordinates p and z.

Figure 1 represents a possible deformation traveling in
the positive z direction. (To emphasize the arbitrariness in
choice of the waveform, I have deliberately shown a mul-
tivalued function.) We inspect a representative short seg-
ment of length &s. Instantaneously it is oriented at angle
« relative to the z axis, has projected lengths 8z and 8p
along and perpendicular to that axis, and is moving with
velocity v in the laboratory frame of reference.

To evaluate v we resort again to Tait’s moving frame
of reference and find that the vector in question is a com-
posite of the forward velocity ¢Z of that frame and the
velocity v*, also of magnitude c, of the segment as seen
in the frame. Referring to the diagram in Fig. 1 and mak-
ing use of the law of cosines, we obtain the relationship

2 =2c%(1 - cosa)=2c*(1 - 6z/6s), (2)

from which the instantantous kinetic energy of the seg-
ment 8s is found to be ‘

8K =% 036502 = 0yc?(5s - 62). @)

While we are about it, we can also evaluate the segment’s
momentum components. Using the components of the
lab-frame velocity described in Fig. 1, we obtain

8py=0pdsv,=0ybsc(l —cosa)=6K/c = (4)

and
8p, = 0ydsv,=— Oydsc sina = - Gycbp. (5)
The entire pulse, or some section of interest, involves a
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string length As whose forward extremity is separated
from its rear by an axial interval Az. The quantities
As — Az and

Am=0y(As -Az) (6)

would represent the excess length and mass of string that
have been accumulated into the interval Az in order to
construct the deformation. Thus a simple summation can
be performed on segment kinetic energies as described in
Eq. (3), and we find that the total energy (entirely kinet-
ic) carried by the pulse is

AE=Amch. (1)

The corresponding longitudinal and transverse momenta
borne by the pulse are

Ap,=AE/c=Amc (8)
and
Ai)p=—O'OCAp:0. (9)

The analogy to the electromagnetic energy—momentum re-
lations is obvious in Eqs. (7) and (8).

III. STRING WAVES INVOLVING THREE DI-
MENSIONS

A slightly more elaborate treatment is needed for the
discussion of a more general deformation of a string, a
possible instance of which is shown in Fig. 2. Using all
three cylindrical coordinates, we can characterize the in-
stantaneous length and orientation of the typical short
string segment by the vector

(10)

58 = 5pp +p5@P + 622,

Fig. 2. A three-dimensional deformation propagating along a string in
the positive z direction, and its projection on a transverse plane. In the
enlarged version of the segment 8s shown at lower right, the forces T
and T’ are shown with different magnitudes, as could be the case for an
extensible string. For an inextensible string the forces would be equal and
their resultant — 8T would be directed toward the segment’s center of
curvature.
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where p, ¢, and Z are unit vectors and ¢ is now a vari-
able angle. In the frame of reference of the moving
waveform, the segment in question has a velocity — c¢8s/
o0s. Its velocity in the laboratory is therefore

v=c(Z - 68/5s). (11)

With the help of Eq. (10), the square and the p and z
components of v can be evaluated and combined with the
segment’s mass oyds to produce the same set of expres-
sions, Egs. (3)~(9), obtained in Sec. II for the plane-
polarized disturbance. In addition we can now compute
the angular momentum carried by one or all of the string
segments associated with the pulse. The component of
particular interest is the one directed along the z axis,
since we might anticipate an extension of the elec-
tromagnetic analogy. The moving string segment ds
makes the contribution

oL,= 0ydspv,

with respect to a point on the axis, and Egs. (10) and
(11) can be used to rewrite this in the form

8L, =—0ycp’5¢. (12)

As the segment length &s under consideration is reduced
toward zero, the quantity p28¢ approaches twice the pro-
jected area on the xy plane of the triangle formed by 8s
and the position vectors to its ends:

limé L, =—20,c64,. (13)

5340

Here, the contribution 84, to the projected area has been
defined as positive if it is generated by a clockwise rota-
tion of the position vector as seen from the wave source,
that is, a positive 8¢. Thus the total z component of an-
gular momentum conveyed by the pulse is exactly

AL,=—20,cAA,, (14)

where A A, is the accumulated area of the pulse’s projec-
tion on the xy plane, as shown in Fig. 2.

An interesting special case is that of a helical (circu-
larly polarized) pulse of constant radius R and constant
pitch 27c/w, in which  denotes the angular frequency at
which tumns of the helix pass a point in the laboratory.
For a helix of N cycles, the angular momentum pre-
scribed by Eq. (14) is

AL,=327NoycR?, (15)

where the signs represent the alternate senses of the circu-
lar polarization. If N is large enough to warrant the ne-
glect of end contributions, the pulse length and string
length for this deformation are

Az =27Nc/w (16)
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and
As=21N[(c/w)*+R*}'/2, amn

From Egs. (6), (7), and (15), it follows that the energy
carried by such a pulse is

AE=27Noyctw [(1 + w*RY/c?)/2 = 1]
=w(R/c)![(1+wRY/c*) /2 -1]|AL,

. (18)

This relationship is not as simple as its electromagnetic
analog, for which the energy is the product of w and the
angular momentum. However, in the extreme situation
where the radius of the helical deformation is much small-
er than its pitch, the limiting value of Eq. (18) is

lim AE=|AL,|w/2. (19)

wWR/c=0

IV. COMPARISON OF UNIFORM-DENSITY
STRING WITH THE CONVENTIONAL MODEL

The model string with uniform tension and linear densi-
ty, as I have used it in the previous two sections, is fun-
damentally different from the variable-tension, variable-
density model commonly analyzed in textbooks as a car-
rier of wave energy. It is not unusual to find both models
referred to in the same context, however, as though there
were no distinction between them. Hereafter, I refer to
the two models as R (for ‘‘rope-like’’) and S (for
““‘spring-like’’).

It should be evident that the type-S string can, and typ-
ically will, transmit two kinds of wave, one in the tension
or linear density and the other of the kind already de-
scribed in connection with the type-R string. I shall call
these ‘‘density’’ and ‘‘shape’” modes of propagation. The
density mode is essentially similar to the longitudinal
wave in an elastic rod, and in that connection often gets
treated separately. The shape wave, on the other hand, is
considered by itself only in those textbooks that make use
of the Tait derivation of the propagation speed, and then
only in that limited respect. Otherwise it is traditionally
discussed in a way that associates it implicitly with a den-
sity wave. It is not hard to show that the string must
have a particular elastic property in order for the two
modes to be propagated with the same speed; even then
the modes are not coupled in a perfectly flexible string,
so that any connection there might be between the two
wave functions must be imposed by the wave source, and
is not a property of the medium. 1 shall derive the neces-
sary elastic condition here in a simple extension of the
Tait-type analysis used previously; a more formal deriva-
tion and the development of a wave equation will be pre-
sented in the Appendix.

When the shape and density modes share a common
speed ¢, the flow of string will be steady at any point in a
Tait frame of reference moving with the waveform. The
local linear density o and flow speed v* in such a frame
can be related by continuity of mass flow:

gy * = 0yc, , (20)
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in which o and ¢ are the density and observed speed at
an axial point where the string tension is 7. With refer-
ence to the diagram in Fig. 2, the net force,
—38T =T + T', on a short string segment of length 8s
may be equated to the product of the segment’s mass and
its observed acceleration in the Tait frame:

- 8T =05sa*.

There being no explicit time dependence of T .or v* in
this reference frame, the last equation can be rewritten in
the form

5s0T/ds =G5sv*av* /s,

and using the constancy of ov* expressed in Eq. (20), we
obtain

(T — op* v*)/2s =0,

The vector quantity in parentheses must be conserved in
the flow, and in fact must be zero everywhere, since T
and v* are both tangent to the string at any point. Thus,
at every point we must have

U*=(T/0)1/27 (21)

and it follows from Eq. (20) that the elastic property the
string must have if its shape and density waves are to be
propagated at equal speeds is described by

To = T,0, . (22)

This is just the property of an ideal spring with zero re-
laxed length, a condition approximated by the Slinky
spring that is often used for wave demonstrations. Some
other interdependence of tension and density, for exam-
ple, the negligible Young’s modulus suggested by Elmore
and Heald,! must result either in a notable difference in
propagation speeds of the two modes, or in no wave at
all. At the other extreme from the very weak spring just
alluded to is the type-R string, whose Young’s modulus is
so far in excess of the tensile stress that any local varia-
tion in tension is immediately propagated away from the
shape wave of interest in Secs. II and III, leaving Eq.
(22) trivially satisfied by separately constant values of T
and o.

Further reference to Fig. 2 and to Eq. (20) will let us
evaluate the kinetic energy of the string segment 8s in the
laboratory frame:

6K =% 06s0" =% 06sc¥[2 - (6,/0)(68/565)]?

=3 0c(0y/0)? +1]6s - 0pc?5z.  (23)

To this we must add the potential energy of density varia-
tion relative to the standard (undeformed) density o,
namely,

8U=4% Tos(1 - 0%/ay?).
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This can be put in terms compatible with 8K by means of
Eqgs. (20)—(22), so that we get

5U=30c?(0/0) = 1]6s, (24)

and the total energy of a segment of the type-S string can
be written

SE=86K+8U

=0,cY (0,/0)6s = 62]. (25)

The transverse and axial components of the segment’s
linear momentum are

6pp=—~0ycbp (26)

and

8p,=0cl(0/0,)6s - 52]. 27)
For o = g4, Eqs. (25) and (27) reduce to their type-R
counterparts, Eqs. (3) and (5). However, in the general
case of an arbitrary deformation of a type-S string, the
ratio of a segment’s energy to its forward momentum is
quite definitely not ¢, but depends on the particular ad-
mixture of shape and density waves introduced by the
wave source.

The strong emphasis on the transverseness of string
particle motion, as found in popular elementary texts,
may mislead the student to think of such motion as a
property of the medium rather than of the source, which
it really is. Once the source has imparted a transverse mo-
tion, any string segment subsequently involved in the
wave propagation will have its density determined by the
relationship

06s =0ydz2. (28)

In that situation, according to Eq. (27), no segment
makes any contribution to forward momentum transport
and, from Eq. (26), a complete pulse or a period of a
continuous wave carries no net transverse momentum
either. In short, the typical textbook string wave is not a
carrier of momentum in the nonrelativistic sense.
Moreover, contrary to common usage, there is no limita-
tion on the wave function and its derivatives, for pure
transverse string waves, other than single-valuedness.
(The form shown in Fig. 1 is precluded, for example.)
Amplitudes are restricted only by the elastic limit of the
medium.

When the transverse wave condition in Eq. (28) is
applied to Eq. (25), we obtain the energy resident in a
segment having instantaneous axial projection 8z. It is

8E=0,cY(0,/0) 1152

= Ty(3p/02)%52, (29)

which is the usual textbook formula. This energy is di-
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vided equally between kinetic and potential forms .at all
times. For small-amplitude motion it is about twice the
energy resident in a comparable segment of type-R string,
in which the potential energy of deformation is a static
property. The coresidence of equal kinetic and potential
energies in every string segment is no more a property of
the type-S string than is the absence of momentum, how-
ever; like the latter, it is a consequence of the initial con-
ditions that impart transverse motion to the string’s parti-
cles. It should be possible to initiate either a pure shape
wave or a pure density wave in such a string.

To complete the record of dynamical properties of the
type-S string wave, we should find the angular momen-
tum it is capable of carrying. The procedure in Sec. III is
still appropriate, but for the segment speed in the Tait
frame of reference we must use v* from Eq. (20). The
general form for the resulting angular momentum carried
by a string segment will again be that of Eqgs. (12) and
(13), but with o, replaced by the segment’s linear density
o. For the special case of a transverse helical pulse, the
combination of this angular momentum formula with the
condition (28) and the first form of the energy expression
(29) yields the relationship

8E=|6L,|w(vy/0). (30)

The likeness to the comparable electromagnetic formula
improves with decreasing radius of the helix.

V. SUMMARY

Although it is regularly displayed in teaching literature
only as a trick device for deriving the wave propagation
speed in a string, the Tait procedure of viewing a wave
from a frame of reference in which it appears static has a
more general usefulness. As I have indicated in this
paper, it is also helpful in describing the particular
stress—strain property an extensible string must have in
order to convey an unchanging waveform and in calculat-
ing the densities of momentum and energy carried by
string waves generally.

With regard to the latter dynamical transport, I have

shown that a deformation of any shape in a flexible, inex-
tensible (type-R) string carries energy and axial linear
momentum, both positive in sign, in the definite ratio c,
the speed of wave propagation. The axial angular momen-
tum turns out to be proportional to the area enclosed by a
projection of the wave shape on a transverse plane.
" Deformations in an extensible string of the kind ap-
proximated by the extended Slinky spring (type-S string)
behave like an arbitrary mixture of the shape wave in the
type-R string and a density wave, both propagating at the
same speed; energy and momentum may be of the same
or different algebraic sign and they are not simply related.
For the special case in which such a string, of normal
linear density o, is excited by a purely transverse
sinusoidal source of angular frequency w and amplitude
Pmax> €ach wavelength conveys energy in the well-known
amount o ,w%pnay>/2, as can be verified readily from Eq.
(29). This most popular of all textbook wave examples
carries no net momentum. The description of angular
momentum transport in this case in similar to that for the
type-R string.”

Our familiarity with electromagnetic radiation may
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condition us to expect that forward momentum, in some
such amount as energy/propagation speed, is the inevita-
ble companion of any kind of wave. Not long ago Vi-
goureux® revived an early speculation by Poynting® to that
effect. Poynting’s immediate concern had been the radia-
tion pressure which was known to be exerted on surfaces
irradiated by either light or sound. It was not yet realized
at the time of his writing, 1905, that the momenta carried
by both types of wave could be associated with mass
transfer. In the optical case the mass in question was soon
to be identified by the special relativity theory. In the
acoustical case, as Rayleigh'® would show later in 1905,
the mass—hence, momentum—transport depends on the
different speeds at which regions of condensation and
rarefaction are propagated, and hence on the equation of
state of the medium.!! Rayleigh went on to show that, in
fluids of certain hypothetical pressure—density behavior, a
wave might carry zero or even negative momentum.
Notwithstanding the unnatural properties he had to invoke
for such fluids, he can be credited with indicating that
forward momentum, although common, is not a necessary
attribute of waves as such; rather its presence or absence
depends on the particular type of wave and the properties
of the medium that carries it.

As in waves of other kinds, the transport of forward
momentum in string waves implies that mass is also being
transferred and that the source must somehow serve as a
dispenser for that mass. Such mass flow is evident in
progressive waves propagated along an inextensible
type-R string, and it finds everyday use by nonphysicists
who want to displace ropes, carpets, or bedsheets forward
along their lengths or in their planes.!? It is almost as
evident that a true transverse wave in the type-S string, as
usually described or implied in textbooks, involves no mass
transfer at all. The source of this kind of wave, being fas-
tened to the string and constrained to move only in a
transverse plane, is in no sense a mass dispenser and so is
not a source of momentum.

APPENDIX

The wave equation for a string can be derived and the
elastic property necessary for the propagation of an undis-
torted wave can be determined as follows.'® (Note that
the Lagrangian representation of the motion of a general
string particle is being used, rather than the more conven-
tional Eulerian description of a displacement or velocity
field.)

Let the extremities of a short string segment of fixed
mass m be instantaneously located at positions r’ and
r' + &r', relative to their original positions zZ and
(z + 87)z. Calling this directed segment 8s’, we can de-
scribe it by

58’ =622+06r'=(Z+0r’/0z)62. (A.1)

The original and instantaneously deformed lengths of the
segment 8z and &8s’ are related by the conservation of
mass:

om =068’ =0ydz. (A.2)
The forces exerted on the segment by adjoining string
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are T(z) and — T(z + 8z), where T is given by

T=-7T68'/5s'=~(T0/0,)88'/6z, (A.3)

so that the net force is

T(z)-T(z +6z)=— (9T/02)6z
= (To/0y)(3°r" /32%)62
+(887/09)3(To)/0z. (A.4)

From the preceding equations and Newton’s second law
we obtain the local acceleration
3%t /o = (To/0y2)o%r /322

+0y"2(% + 91’ /82)3(T0)/?z. (A.5)
The second term on the right vanishes under the condition
that To has the same value throughout the string,

including the undeformed portions, where T and o are T
and o,. Thus, for

To= Toco ) (A, 6)
Eq. (A.S5) reduces to the ordinary wave equation
a%rr /a2 = (T,/0,)2%r! /222, A.7)

which yields the same results as were obtained by a Tait
analysis in Sec. IV.
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