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that the becquerel is much better for communicating am
physicists~especially because it is unusual for those of
who are not nuclear or health physicists to be able to iden
the amount of activity in the curie, that is, the activity in o
gram of radium!. I suggest future use of statements such
‘‘a 370 000 Bq~equivalent to 10mCi! source’’ to minimize
reader confusion.

Reference 1 describes a nice experiment to determine
the relativistic relationsp5gmv and E5gmc2 correctly
characterize particles with largeb. I wish it had been labeled
that way.
The longitudinal momentum of transverse
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traveling waves on a string
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Several years ago in this journal, Rowland and Pask1 took
note of a confusion in the literature regarding the longitu
nal momentum carried by transverse traveling waves o
string. Through a combined numerical and analytical
proach, they reached~what I take to be! a convincing reso-
lution of the matter. Rowland and Pask accurately diagno
the source of error by several authors in an unfounded
sumption that the instantaneous velocity of an infinitesim
segment of string is always perpendicular to the segm
This is not the source of error, however, in the influential t
by Elmore and Heald,2 which is invariably cited by papers o
the subject and contains a frequently quoted incorrect
pression for momentum density. The purpose of this not
to identify the mistake, which is found in Chapter 1, Secti
11, pages 46–47 of the book, as well as to demonstrate
by correcting this mistake we arrive at the result of Rowla
and Pask.

In the notation of Elmore and Heald, the wave equation

]2h

]t2
5c2

]2h

]x2
, ~1!

where h(x,t) is the transverse displacement andc
5(t0 /l0)1/2 is the propagation velocity, witht0 the tension
andl0 the linear mass density. Their treatment of longitu
nal momentum starts with an expression for the longitudi
component of force density due to string curvature:

2t0

]2h

]x2

]h

]x
5l0

]2j

]t2
~2!

with j(x,t) the longitudinal displacement of the string resu
ing from the transverse wave.3 Then, in their own words,
‘‘we integrate with respect to time fromt0 , a time when no
wave is present on the string, to an arbitrary later timet and
with respect tox over a finite string segment lying betwee
x1 andx2 . The result should be the momentumGx acquired
by the string segment as the result of transverse wave
tion.’’ These integrations lead to the following:
-
a
-

d
s-
l
t.
t

x-
is

at
d

s

-
l

o-

Gx52l0E
x1

x2 ]h

]x

]h

]t
dx1E

t0

t

@K1~x2 ,t !2K1~x1 ,t !#dt,

~3!

whereK15dK/dx5 1
2l0(dh/dt)2 is the kinetic energy den

sity due to transverse motion of the string.
According to Elmore and Heald, ‘‘@Eq. ~3!# for the mo-

mentumGx has the following interpretation: the second i
tegral on the right clearly represents momentum delivered
the string segment by impulses at the two boundaries ax1

andx2 . If these boundaries are very remote, so that a w
disturbance initiated on the string segment has not yet
time to reach them, this integral vanishes. We are thus
with the first integral, whose form suggests that the quan

gx~x,t ![2l0

]h

]t

]h

]x
~4!

may be interpreted as a localized momentum density in thx
direction associated with a transverse wave.’’

Here is the problem: the initiation of wave motion on
previously quiescent segment of string requires either th
wave propagates onto that segment from elsewhere on
string, or that external forces—other than the forces ass
ated with wave propagation itself—are imposed from outs
the system. The first alternative directly violates the autho
assumption that both ends of the string remain undistur
during the integration time. The second alternative adm
forces not described by the expression being integrated.

Let us adopt the first alternative, allowing for the wave
propagate onto the string segment atx1 . Then we have

E
t0

t

K1~x1 ,t !dt5
1

2
l0E

t0

t S ]h

]t D 2

dt

5
1

2
l0E

t0

t ]h

]t

]h

]t
dt

52
1

2
l0E

x1

x2 ]h

]t

]h

]x
dx, ~5!
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the last equality holding by virtue of (]y/]t)dt
52(]y/]x)dx for the traveling wave, which permits us t
convert the time integral to an integral overx at time t
~whereas the time integrals were carried out atx5x1). This
integral, inserted into Eq.~3!, just cancels half the first inte
gral on the right-hand side of the equation, leaving the re

Gx52
1

2
l0E

x1

x2 ]h

]t

]h

]x
dx, ~6!

which leads to identification of

gx52
1

2
l0

]h

]t

]h

]x
~7!

as the momentum density. This is the result obtained
Rowland and Pask, under the usual conditions pertainin
transverse waves on a string.
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Infinite resistive network problems have served as ex
lent vehicles for helping electrical engineering and phys
students recognize and appreciate the power of superpos
and symmetry in the analysis of electrical networks. Th
problems have been studied extensively using superpos
and symmetry.1–10 A special case of this class of problem
involves the calculation of the effective resistance betw
two adjacent nodes of an infinite uniform two-dimension
~2D! resistive lattice~periodic in both dimensions with a
zero-potential boundary condition at infinity! comprised of
identical resistors each of valueR. In particular, the effective
resistance between two adjacent nodes of the 2D Lieb
resistive mesh~the infinite 2D square resistive lattice! was
calculated by Aitchison1 and found to be (1/2)R. Bartis2 cal-
culated the resistance between adjacent nodes for three
infinite 2D resistive lattices, the triangular, Honeycomb, a
Kagomé lattices, and found the effective resistances to
(1/3)R, (2/3)R, and (1/2)R, respectively.

Fig. 1. Infinite 2D square resistive lattice.
l-
s
ion
e
on

n
l

an

her
d
e

The goal of this paper is to extend the results of Refs
and 2 to the general problem of finding the total effecti
resistanceReff between two adjacent nodes of any infini
D-dimensional resistive lattice, whereD51, 2, 3,... and the
lattice is periodic and infinite in allD dimensions with a
zero-potential boundary condition at infinity. Our general s
lution for Reff is of pedagogical interest because it gener
izes the previous results of Refs. 1 and 2 to a simple
elegant equation that covers all adjacent-node infin
D-dimensional resistive networks and because it reinfor
the power of the superposition principle and symmetry
electrical circuit analysis.

For the purpose of illustration, consider the infinite 2
square resistive lattice shown in Fig. 1. The number of re
tors connected to each node is denoted byM (M54 in Fig.
1!. As in Refs. 1 and 2, we use superposition and symme
along with two test current sources each of valueI to calcu-
late the effective resistanceReff between two adjacent node
by injecting a test currentI into any single node on the
D-dimensional resistive lattice from the zero-potent
boundary at infinity and then extracting another identical t
currentI from an adjacent node connected to a current s
kept at zero potential. By using Kirchhoff’s current law an
symmetry, we find that each of theM resistors connected to
the original node will receiveI /M of the injected current.
Similarly, we find that each of theM resistors connected to
the adjacent node will receive2I /M of the extracted curren
in the opposite direction. Therefore, by superposition,
total resulting current flowing in the resistorR connecting the
two adjacent nodes will be 2I /M , which leads to a voltage
drop across the resistorR of V5(2I /M )R. Thus the effec-
tive resistance is
972© 2004 American Association of Physics Teachers




