that the becquerel is much better for communicating among‘?Electronic mail: aubrecht@mps.ohio-state.edu . .
physicists(especially because it is unusual for those of us JA-WJ '-‘F’,itze';lch;vagvm”‘%%arggg to measure relativistic mass increase,
who are not nuclear or health physicists to be able to identify,~ " > "3 (9), 876-884(2003.
P . . Lo R. M. Barnett, H. Miary, H. R. Quinn, G. J. Aubrecht, R. N. Cahn, J.

the amount of activity in the curie, that is, the activity in one

ram of radiun). | suggest future use of statements such as Dorfan, M. Dresden, G. Goldhaber, J. D. Jackson, and K. Offe:
9 ’ . ) " LT Charm of Strange QuarkiSpringer-Verlag, New York, 2002Sec. D.3.3,

a 370000 Bqg(equivalent to 10uCi) source” to minimize pp. 244245
reader confusion.

. . . . SA. E. Noether, “Invariante Variationsprobleme,” Nachr. Ges. Wiss.
Reference 1 describes a nice experiment to determine that;getiingen, Math.-Phys. KI. 235-251918. For more information on

the relati\_/iStiC re_lations_p= ymv an_d E.: ymc? correctly Noether’s contributions, seéhttp://www.physics.ucla.edt/cwp/Phase2/
characterize particles with large | wish it had been labeled  Noether, Amalie Emmy@861234567.himl
that way. L. B. Okun, “The concept of mass,” Phys. Toddp (6), 31-36(1989.
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Several years ago in this journal, Rowland and P sk X291 In t
note of a confusion in the literature regarding the longitudi-  Gyx=— of - —dx+f [Ki(X2,t) —Ky(Xq,t)]dt,
nal momentum carried by transverse traveling waves on a to
string. Through a combined numerical and analytical ap- &)
proach, they reache@hat | take to bga convincing reso-  whereK,=dK/dx= i\(d7/dt)? is the kinetic energy den-
lution of the matter. Rowland and Pask accurately diagnosesity due to transverse motion of the string.
the source of error by several authors in an unfounded as- According to Elmore and Heald,[Eq. (3)] for the mo-
sumption that the instantaneous velocity of an infinitesimainentumG, has the following interpretation: the second in-
segment of string is always perpendicular to the segmenteqra| on the right clearly represents momentum delivered to
This is not the source of .err(.)r,.howgver, in the influential texty, string segment by impulses at the two boundaries, at
by Elmore and Healdwhich is invariably cited by papers on o X,. If these boundaries are very remote, so that a wave
the subject and contains a frequently quoted incorrect ©XJisturbance initiated on the string segment has not yet had
pression for momentum density. The purpose of this note i ime to reach them, this integral vanishes. We are thus left

to identify the mistake, which is found in Chapter 1, Section_ . L .
11 pagef)é 46-47 of the book. as well as to dpemonstrate thg{lth the first integral, whose form suggests that the quantity

by correcting this mistake we arrive at the result of Rowland an dn
and Pask. G(XD=—Ro—m — (4)
In the notation of Elmore and Heald, the wave equation is
may be interpreted as a localized momentum density irxthe
Py 07 direction associated with a transverse wave.”
F:C F' 1) Here is the problem: the initiation of wave motion on a
X previously quiescent segment of string requires either that a
where p(x.t) is the transverse displacement ard wave propagates onto that segment from elsewhere on the
= ' : : : . string, or that external forces—other than the forces associ-
=(70/ko) ™" is the propagation velocity, witho the tension e \yith wave propagation itself—are imposed from outside
and\, the linear mass density. Their treatment of longitudi-ihe system. The first alternative directly violates the authors’
nal momentum starts with an expression for the |0”9'tUd'”abssumption that both ends of the string remain undisturbed

component of force density due to string curvature: during the integration time. The second alternative admits
forces not described by the expression being integrated.
P dn _ I*E 2 Let us adopt the first alternative, allowing for the wave to
T2 ax N2 2) propagate onto the string segmenixat Then we have

t t 2
with &(x,t) the longitudinal displacement of the string result- f Ky(x,,t)dt= 17\0] ((?_77) dt
to

ing from the transverse waveThen, in their own words, to 2 at
“we integrate with respect to time frory, a time when no 1 tg
. ; . ndn
wave is present on the string, to an arbitrary later tiraed =— OJ — —dt
with respect tax over a finite string segment lying between 2 to It It
X1 andx,. The result should be the momentudy acquired 1 X2 49 A7
by the string segment as the result of transverse wave mo- =— = Of — —dx, (5)
tion.” These integrations lead to the following: 2 ")y It oox
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the last equality holding by virtue of df/at)dt “Electronic mail: awalstad@pitt.edu

o ; . . ID. R. Roland and C. Pask, “The Missing Wave Momentum Mystery,” Am.
= —(dyldx)dx for the traveling wave, which permits us to Phys 67, 378—388(1999.

convert the tlme mtegral to an mtegral overat tlme_t 2W. C. Elmore and M. A. HealdPhysics of Wave&McGraw—Hill, New
(whereas the time integrals were carried oukatx,). This York, 1969; Dover, New York, 1985
integral, inserted into Eq3), just cancels half the first inte-  3we are speaking here of small longitudinal motions associated with a
gral on the right-hand side of the equation, leaving the result transverse wave. The wave equation itself is derived under the approxima-
1 X297 In tion of purely transverse motion and uniform tension. Due to curvature of
Gy=— _)\OJ — —dx, (6) the string, the tension forces at opposite ends of an infinitesimal segment
2 X1 at ox do not cancel. The longitudinal component of the resulting net force is
much smaller than the transverse component if we Hawkx|<1. The
longitudinal motions may then be treated as a perturbation on the domi-
1 dn dn nant transverse motions. Longitudinal motions are also produced by the
Ox=— 2 M0 ot o () variations in string tension associated withgitudinalwaves; indeed, the
physical impetus which establishes a transverse wave is likely to generate
as the momentum density. This is the result obtained by a longitudinal wave too, and longitudinal waves are essential to the con-
Rowland and Pask, under the usual conditions pertaining toservation of momentum when a transverse wave encounters a density dis-
transverse waves on a string. continuity. Interested readers should consult Rowland and Pask.

which leads to identification of

Impedance between adjacent nodes of infinite uniform D-dimensional
resistive lattices
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Infinite resistive network problems have served as excel- The goal of this paper is to extend the results of Refs. 1
lent vehicles for helping electrical engineering and physicsaand 2 to the general problem of finding the total effective
students recognize and appreciate the power of superpositiggsistanceR.; between two adjacent nodes of any infinite
and symmetry in the analysis of electrical networks. Thesg.dimensional resistive lattice, wheR=1, 2, 3,... and the
problems have R)een studied extensively using superpositiQgyiice is periodic and infinite in alD dimensions with a
and symmetry—"° A special case of this class of problems zero-potential boundary condition at infinity. Our general so-

involves the calculation of the effective resistance between .. : : : :
; . : . lution for R4 is of ical interest it general-
two adjacent nodes of an infinite uniform two—dlmensmnaIIjlj on for Rey is of pedagogical interest because it genera

(2D) resistive lattice(periodic in both dimensions with a izes the previous results of Refs. 1 and 2 to a simple and

zero-poental bourdary conon a ftsomprised of S5gart SaUalon bl covers sl adacentnode ninie
identical resistors each of vall In particular, the effective

resistance between two adjacent nodes of the 2D Liebmaﬁqe ppwer_of t_he supgrposition principle and symmetry in
resistive meskthe infinite 2D square resistive latticevas € 'ccrical circuit analysis. . . L
calculated by Aitchischand found to be (1/8. Bartis’ cal- For the purpose of illustration, consider the infinite 2D
culated the resistance between adjacent nodes for three otH&t2'€ reS|st|\(/je Iatucehsho;vn.m dF'g' 1';/26 nlimbg ' of resis-
infinite 2D resistive lattices, the triangular, Honeycomb, and0rs connected to each node is denotedvbyM =4 in Fig.

Kagomelattices, and found the effective resistances to bel)- As in Refs. 1 and 2, we use superposition and symmetry
(13)R, (2/3)R, and (1/2R, respectively. along with two test current sources each of value calcu-

late the effective resistande.s between two adjacent nodes
by injecting a test current into any single node on the
D-dimensional resistive lattice from the zero-potential
boundary at infinity and then extracting another identical test
currentl from an adjacent node connected to a current sink
kept at zero potential. By using Kirchhoff’s current law and
symmetry, we find that each of thé resistors connected to
the original node will receivd/M of the injected current.
Similarly, we find that each of th# resistors connected to
the adjacent node will receive /M of the extracted current

in the opposite direction. Therefore, by superposition, the
total resulting current flowing in the resist@rconnecting the
two adjacent nodes will bel2M, which leads to a voltage
drop across the resistét of V=(2I/M)R. Thus the effec-
Fig. 1. Infinite 2D square resistive lattice. tive resistance is
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