
Distributed Memory Parallelization
of a Three-Dimensional Finite
Element Method Poisson Solver

December 2022

M
as

te
r's

 th
es

is

M
aster's thesis

Nicolai Stølen

2022
N

icolai Stølen

NT
NU

N
or

w
eg

ia
n

Un
iv

er
si

ty
 o

f
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

Fa
cu

lty
 o

f N
at

ur
al

 S
ci

en
ce

s
De

pa
rt

m
en

t o
f P

hy
si

cs

Distributed Memory Parallelization of a
Three-Dimensional Finite Element
Method Poisson Solver

Nicolai Stølen

Applied Physics and Mathematics
Submission date: December 2022
Supervisor: Jon Andreas Støvneng
Co-supervisor: Trond Brudevoll

Norwegian University of Science and Technology
Department of Physics

Abstract

For over a decade, the Norwegian Defence Research Establishment (FFI) has
worked together with students from different universities to develop what is now
a very capable semiconductor device simulator, FFI-MCS. It has parallelized full-
band flight and scattering routines, as well as a 3D Finite Element Method (FEM)
Poisson solver. As requirements for the simulator grow larger, the simulator needs
to become more efficient and run faster. Parallelizing the simulator has therefore
been a focus. The flight and scattering routines were parallelized by Bolstad, and
now the Poisson solver is next. In this thesis an implementation of a parallelized
Poisson solver was attempted.

The method of parallelization was chosen based on my project thesis, and is a dis-
tributed memory domain decomposition technique using the Message Passing In-
terface (MPI) to implement the parallel preconditioned conjugate gradient (PPCG)
method. To do this, the mesh needs to be partitioned, and after some trial and
error, it was decided that this partioning would be done through the third pary
software Gmsh. A new mesh file parser had to be implemented in FFI-MCS, but
after that, work on the Poisson solver could start.

Results show that the current parallel Poisson solver does not produce a valid solu-
tion. There are large errors on every partition boundary, but within each partition
the solver seems to produce results that are not too deviant from normal. It is
unknown as of now what causes these errors, and they will need to be researched
and fixed in a future project or thesis.

i

ii

Sammendrag

I over et ti̊ar har Forsvarets Forskningsinstitutt (FFI) jobbet sammen med stu-
denter fra forskjellige universiteter for å utvikle det som n̊a har blitt en veldig
kapabel halvelederkomponentsimulator, kalt FFI-MCS. Den har en parallellisert
rutine for partikkelbevegelse og -spredning, samt en 3D elementmetodeløser (FEM)
for Poisson-ligningen. Etterhvert som kravene til simulatoren blir større, m̊a den
ogs̊a bli mer effektiv og kjøre raskere. Derfor har parallellisering av simulatoren
vært et fokus. Rutinene for partikkelbevegelse og -spredning ble parallellisert av
Bolstad, og n̊a er det Poisson-løseren som st̊ar for tur. I denne oppgaven s̊a er det
forsøkt å implementere en parallell Poisson-løser.

Metoden for parallellisering av løseren er basert p̊a prosjektoppgaven min, og er en
delt minne og domeneoppsplittingsteknikk ved hjelp av Message Passing Interface
(MPI) for å implementere “Parallel Preconditioned Conjugate Gradient”-metoden
(PPCG). For å gjøre dette, s̊a m̊a nettet være partisjonert, og etter noe prøving
og feiling ble det bestemt at denne delen skulle gjøres gjennom en tredjepartspro-
gramvare, Gmsh. En ny nettfilleser m̊atte implementeres i FFI-MCS, men etter
det kunne arbeided med Poisson-løseren starte.

Resultatene viser at den n̊aværende parallelle Poisson-løseren ikke produserer riktige
resultat. Det er store feil p̊a alle overflater mellom partisjoner, men inne i hver en-
kelt partisjon virker det som løsningen ikke har veldig store feil. Det er ukjent per
n̊a hva som for̊arsaker disse feilene, og de m̊a undersøkes nærmere og fikses i en
fremtidig prosjekt- eller masteroppgave.

iii

iv

Preface

This master’s thesis is submitted to the Norwegian University of Science and Tech-
nology (NTNU), fulfilling the requirements of a master’s thesis in Applied Physics
and Mathematics at the Department of Physics (IFY). The official subject title is
TFY4900 Physics, Master’s Thesis.

I would like to thank my supervisor Trond Brudevoll at the Norwegian Defence
Research Establishment (FFI) for his help and understanding throughout my work
on the thesis. I give thanks to Professor Jon Andreas Støvneng at NTNU for
assuming the role as internal supervisor. I would also like to thank all of my
friends and my family for their continuous support.

Nicolai Stølen,
December 16th, 2022

v

vi

Table of Contents

Abstract i

Sammendrag iii

Preface v

Table of Contents vii

List of Figures xi

List of Tables xiii

List of Listings xiv

Abbreviations xix

1 Introduction 1

1.1 Thesis Structure . 2

2 FFI-MCS 3

2.1 Introduction . 3

2.2 Previous development . 4

2.3 Program Flow . 4

2.4 Motivation for Parallelization of the Poisson Solver 4

3 Poisson Solver 9

vii

3.1 Poisson equation . 9

3.2 Weak formulation . 9

3.2.1 Derivation . 10

3.2.2 A note on boundary conditions 11

3.3 Discretization . 11

3.4 Assembly . 12

3.5 Solving the system . 13

4 Distributed Memory Parallelisation 15

4.1 OpenMP . 15

4.2 MPI . 16

4.3 Hybrid approaches . 17

4.4 Approach used in FFI-MCS . 17

5 Partitioning the Mesh 19

5.1 Different approaches . 19

5.1.1 Using Gmsh’s partitioner . 19

5.1.2 Developing an embedded partitioner 20

5.1.3 Using the METIS library . 20

5.2 Making a decision . 20

5.3 Incorporating the Gmsh partitioner 21

6 Implementation 23

6.1 Program Flow . 23

6.1.1 Mesh Partitioning . 23

6.1.2 Seperation of Main and Secondary Processes 23

6.1.3 Initialization Routines . 24

6.1.4 Main Program Loop . 24

6.1.5 Program End . 25

6.2 Parallel Preconditioned Conjugate Gradient 25

viii

6.2.1 Distributed and Accumulated Vectors and Matrices 26

6.2.2 The Algorithm . 26

7 Parallel Workflow 29

7.1 Creating the mesh . 29

7.2 Partitioning the mesh . 29

7.3 Running FFI-MCS . 30

7.4 Post-processing . 30

7.5 Summary . 30

8 Results 31

8.1 Validity . 31

8.2 Runtime . 36

9 Further work 37

9.1 Fix the parallel Poisson solver . 37

9.2 Optimise MPI communication patterns 37

9.3 Migrate scattering routines from OpenMP to MPI 38

9.4 Other parallelization areas . 38

9.5 Improving documentation . 38

9.6 Configuration and data files layout 39

9.7 Version Control . 39

9.8 Persistent distributed stiffness matrix 39

9.9 Better output . 39

Bibliography 41

ix

x

List of Figures

2.1 Flowchart of the main parts of MonteFFI 6

2.2 Simplified flowchart of the MonteFFI initialization procedure. 7

3.1 Example of linear basis functions on a 1D mesh with compact local
support on the elements to which they belong. Each basis function
ϕi has support only on elements i and i + 1, where element i is the
interval [xi−1, xi], being exactly 0 everywhere else. 13

6.1 Separation of program flows at the start of FFI-MCS execution. . . . 24

6.2 Initialization routine for FFI-MCS. 25

6.3 Main loop flow of the main and secondary processes. To keep the
chart simple enough, t = t + dt has been omitted from the “No”
paths for the t = tf ? decision blocks. 28

8.1 The electric potential at the start, in the middle and at the end of
the simulation for 2 partitions. The scale at the left is the electric
potential in volts. 32

8.2 The electric potential at the start, in the middle and at the end of
the simulation for 4 partitions. The scale at the left is the electric
potential in volts. 33

8.3 The electric potential at the start, in the middle and at the end of
the simulation for 64 partitions. The scale at the left is the electric
potential in volts. 34

8.4 The charge carriers of the system after the simulation has finished
for different partition counts. Holes are coloured red and electrons
are coloured blue. Notice how the holes seem to get trapped at the
interfaces between partitions. 35

xi

xii

List of Tables

2.1 Summary of development history of FFI-MCS 5

xiii

xiv

List of Listings

4.1 A serial implementation of the dot product in Fortran. 16
4.2 A parallel implementation of the dot product using Fortran OpenMP. 16

xv

xvi

List of Algorithms

3.1 The preconditioned conjugate gradient method from Fatnes’ thesis
[18, p. 29]. Variables are defined as in the input blocks. Furthermore,
r is the residual vector, and the rest are working vectors and scalars. 14

6.1 The parallel preconditioned conjugate gradient method presented
in Nikishkov’s article [28, p. 19]. Variables are defined as in the
input blocks. Furthermore r is the residual vector, and the rest are
working vectors and scalars. Barred vectors, such as z̄, represent the
accumulated form of their distributed counterpart, z. 27

xvii

xviii

Abbreviations

2D Two-Dimensional
3D Three-Dimensional
APD Avalance Photodiode
API Application Programming Interface
CMT Cadmium Mercury Tellurium
CPU Central Processing Unit
EMC Ensemble Monte Carlo
FD Finite Difference
FDM Finite Difference Method
FE Finite Element
FEM Finite Element Method
FFI Norwegian Defence Research Establishment (Forsvarets

Forskningsintitutt)
FFI-MCS FFI’s Monte Carlo semiconductor device simulator
MCS Monte Carlo Simulator
MPI Message Passing Interface
PCG Preconditioned Conjugate Gradient
PPCG Parallel Preconditioned Conjugate Gradient
RAM Random Access Memory

xix

Chapter 1

Introduction

The invention of semiconductor devices may be regarded as one of the biggest
turning points in human history. It has transformed how every part of our life
functions and continues to do so to this day. As requirements for their performance
become higher, so does the need for better and faster methods of developing them.
Iterating on physical prototypes quickly becomes prohibitively expensive, and so
there is a need for computer simulations to be able to predict performance and
iterate on designs before any production occurs.

FFI-MCS is a semiconductor device simulator featuring a 3D Finite Element Method
Poisson solver and a parallelized full band particle scattering routine. It has been
in development for over 10 years, as a collaborative project between master’s stu-
dents and researchers at the Norwegian Defence Research Establishment (FFI).
From small and humble beginnings, it has evolved into a very capable simulator.

A few years ago, FFI-MCS was a purely serial program, but as more accurate sim-
ulations are wanted, particle counts increase, grid sizes decrease, and performance
take a big hit. It was therefore necessary to parallelize parts of the simulator to
offset this performance hit. Bolstad parallelized the particle scattering routines in
his project thesis [1], drastically reducing runtime. Now remains to parallelize the
other main component of the simulator, the 3D Finite Element Method (FEM)
Poisson solver.

Another motivation for further parallelizing FFI-MCS is FFI’s purchase of a new
machine dedicated to simulations named Freiherr. It has a 64 core CPU and
256 GB of RAM. As FFI-MCS previously had been run mainly on clusters where
compute nodes had around 20 cores, this big increase in core count could yield
great performance gains if proper parallelization of the code is performed.

The work done during this master’s thesis was based on the conclusions reached
in my project thesis [2]. There it was concluded that the 3D FEM Poisson solver
should be parallelized using the distributed-memory library MPI. Any further nar-
rowing down was not made, and so the first part of the master’s thesis was finding

1

out what to implement.

1.1 Thesis Structure

Chapter 1 gives an introduction to the master’s thesis and its motivation.

Chapter 2 explains the general workings and history of FFI’s semiconductor device
simulator, FFI-MCS. It gives an overview over its recent development, and its need
for further development.

Chapter 3 gives a brief introduction to the Poisson equation, its weak formulation
and how FFI-MCS currently solves it using the finite element method (FEM).

Chapter 4 goes over some different parallelization strategies for the Poisson solver
and which approach was used in this thesis.

Chapter 5 discusses some different strategies for partitioning the mesh used by
the Poisson solver, and explains the approach used in this thesis.

Chapter 6 explains how the mesh partitioning and the parallelization of the Pois-
son solver was implemented into FFI-MCS.

Chapter 7 gives a quick overview over the new workflow required for running
FFI-MCS with a parallel solver.

Chapter 8 presents and discusses some of the results of the parallel solver.

Chapter 9 gives some recommendations on which areas of FFI-MCS that need to
be improved and which ones are the most important.

2

Chapter 2

FFI-MCS

This chapter gives an overivew over the Norwegian Defence Research Establish-
ment’s (FFI) semiconductor device sumulator called FFI-MCS1 before any paral-
lelization was implemented.

2.1 Introduction

FFI-MCS is a program developed by researchers at the Norwegian Defence Re-
search Establishment (FFI) and students from various universities. It has been
continually developed for over a decade and its latest iteration, MonteFFI, supports
simulation of three-dimensional semiconductor devices with a full-band parallelized
particle scattering procedure and a finite element method (FEM) solver using the
preconditioned conjugate gradient (PCG) method.

From small beginnings it has grown into quite the capable simulator, and has been
used to simulate avalance photodiodes (APD) by researchers at FFI. The program
has grown quite complex over the years, and now it needs to be optimized so that
simulations don’t take as much time as they do now.

In 2021, FFI purchased a machine dedicated solely to these kinds of simulations
named Freiherr. It has 64 CPU cores, and so efficient parallelization of FFI-MCS
is of great performance so it can take full advantage of these cores. Another such
machine, Liebherr, was purchased in 2022 for the same purposes. Their names are
German and mean “free man”, which is kind of what these machines are meant to
be - free-standing, and not reliant on any cluster or similar.

1“FFI Monte Carlo Simulator”

3

2.2 Previous development

FFI-MCS has had many different developers who have added different types of
functionalities to the simulator. Their contributions have been summarised in
table 2.1. Its latest iteration was made by Bolstad and is called MonteFFI [1].
It features a full-band parallelized particle scattering procedure with a 3D FEM
solver.

2.3 Program Flow

The overall flow of MonteFFI is quite simple. It starts with an initialization routine,
where it reads in physical parameters, time step size and other core settings. It then
reads the mesh file for the physical model into a custom triangulation class, and
begins assembling the stiffness matrixa and load vector. After all these initialization
steps are finished, it enters the main program loop, where it solves the Poisson
equation, performs flight and scattering of the particles in the system, as well as
saving particle and potential data when needed.

An overview of the initialization flow of MonteFFI is presented in figure 2.2, and
an overview of the main program loop flow is given in figure 2.1.

2.4 Motivation for Parallelization of the Poisson
Solver

Though FFI-MCS’ latest iteration, MonteFFI, is a very capable simulator, it still
takes a lot of time to run a simulation. Bolstad’s implementation of a parallelized
flight and scattering routine remedied some of the performance issues, but there is
still a lot to be desired. As the need for more complex and accurate simulations
grows larger, it is more probable that smaller grid sizes are needed instead of more
simulation particles. Therefore there is a strong need for a parallel Poisson solver
which would cut down on execution times drastically.

4

Table 2.1: Summary of development history of FFI-MCS. This
table is adapted from my project thesis, and based on the similar
table in Bolstad’s thesis [3, p. 21].

Year Developer Description Ref.
2007 H. Brox Start of FFI-MCS: A bare-bones EMC simu-

lator.
N/A

2009 Ø. Olsen Incorporated SCRATES for pre-calculating
scattering rates, prototyped carrier-carrier
scattering and Pauli exclusion modules.

[4]

O. C. Norum Added multiple scattering mechanisms and a
proof of concept 2D FD Poisson solver.

[5]

2010 Ø. Sk̊aring Improved accuracy of Pauli exclusion, hot
phonon and screening mechanisms.

[6]

2011 C. N. Kirkemo Implemented an improved 2D FD Poisson
solver and simulated PN-junctions and CMT
APD devices.

[7]

2012 A. J. V. Vestby Used Shockley-Ramo analysis to calculate ter-
minal currents in single photon excited APDs.

[8]

2013 K. V. Falch Studied Auger recombination models. [9]
B. Karlsen Provided full-band tables created with k · p

and ab initio methods.
[10]

T. S. Bergslid Enabled use of full-band structures to cal-
culate scattering rates and selection of final
states.

[11]

2014 J. Selv̊ag Improved precision for selection of final states. [12]
2015 J. J. Harang Created a 2D FD Poisson solver for tensor

grids.
[13]

2016 T. Chirac Simulated photoconductive terahertz switches. [14]
D. K. Åsen Created a self force free 2D FEM Poisson

solver.
[15]

2017 D. Goldar Studied wave function overlaps with Wien2k. [16]
2018 M. Haug Studied nonequilibrium Green’s functions and

Schrödinger-Poisson techniques.
[17]

S. N. Fatnes Created a 3D FEM Poisson solver. [18]
2019 M. Estensen Studied optimal mesh generation. [19]
2020 A. Bolstad Parallelized single-carrier flight and scattering. [1]

Incorporated Fatnes’ 3D FEM Poisson solver
into the full-band version of FFI-MCS, now
called MonteFFI.

[3]

2022 N. Stølen Proposed a parallelization strategy for FFI-
MCS’ Poisson solver

[2]

5

MonteFFI Start Initialize config timestep = 0

Find element
positions

of particles

Time to run
Poisson solver?

Solve Poisson
equation

Electric field
interpolation

Flight and
scattering

Delete and
insert particles

Save particle
energy data

Time to save
extra data?

Save particle
and poten-
tial data

t = tf ?

t = t + dt

Collect
statisticsMonteFFI End

No

Yes

No

Yes

No

Yes

Figure 2.1: Flowchart of the main parts of MonteFFI. The Poisson
solver is run every time the timestep is a multiple of the variable
poicall which is set in the case file. Extra data about particle
states and potential values are saved every 10% of the execution,
as well as in the beginning. The “element position” of a particle
is the element in which it is currently located. Adapted from the
figure in my project thesis [2, p. 5].

6

Initialization Start

Read case file
and initialize

core parameters

Load particle
bands and

scattering rates

Initialize
device and

triangulation
objects

Initialize
particles

Initialize
FEM solver

Load stiffness
matrix from

previous run?

Assemble
stiffness matrix

Read stiffness
matrix from file

Precondition
the stiff-

ness matrix

Resume previous
simulation?

Load particle
data from file

Initialization End

Figure 2.2: Simplified flowchart of the MonteFFI initial-
ization procedure. Taken from my project thesis [2, p. 6].

7

8

Chapter 3

Poisson Solver

This chapter will give a quick summary of the Poisson equation, its weak formula-
tion and the finite element method solver used to solve it in FFI-MCS. If you are
not familiar with the finite element method, recommended reading material is [20,
21, 22]. For a more in-depth explanation of FFI-MCS current 3D FEM Poisson
solver, see Fatnes’ thesis [18, Ch. 2-3].

3.1 Poisson equation

The Poisson equation is an elliptic partial differential equation, and relates a poten-
tial function with a distribution. In our case this potential is the electric potential
u, and the distribution is the distribution of charge ρ. The strong formulation of
the equation

−∇2u(x) = ρ(x)
ϵrϵ0

, (3.1)

is the one most people are familiar with, where ϵr is the relative electric permittivity
and ϵ0 is the permittivity of free space. One can discretize the differential operator
in the strong formulation to solve the equation using the finite difference method
(FDM), however this limits the permitted solutions u to functions (the solution
space) that are twice differentiable on the domain.

3.2 Weak formulation

The weak formulation of the Poisson equation is a formulation which imposes less
restrictions on the solution space. The solution in the weak formulation need only

9

be continuous and its derivative square-integrable.

3.2.1 Derivation

We derive the weak formulation beginning from the strong formulation with mixed
homogeneous Dirichlet Neumann boundary conditions. Let Ω denote the problem
domain, ∂Ω = ∂ΩD +∂ΩN its boundary, Dirichlet boundary and Neumann bound-
ary, respectively. For ease of notation, we set ϵrϵ0 = 1. Then our problem can be
stated as

−∇2u(x) = ρ(x), u = 0 on ∂ΩD, ∇u = 0 on ∂ΩN . (3.2)

We multiply by a test function v(x), and integrate over the domain. For simplicity
of notation, function arguments will be omitted.

∫
Ω

−(∇2u)v dΩ =
∫

Ω
ρv dΩ (3.3)

Using Green’s identity, this integral is equal to

∫
Ω

∇u · ∇v dΩ −
∫

∂Ω
v∇u · n̂ d∂Ω =

∫
Ω

ρv dΩ. (3.4)

The boundary integral can be split into Dirichlet and Neumann parts, giving

∫
∂Ω

v∇u · n̂ d∂Ω =
∫

∂ΩD

v∇u · n̂ d∂Ω +
∫

∂ΩN

v∇u · n̂ d∂Ω, (3.5)

but on the Neumann boundary, ∇u = 0, so the Neumann boundary integral van-
ishes. For the Dirichlet boundary, we will assume that the test function v lives
in the same vector space as the solution u, and therefore v = 0 on the Dirichlet
boundary, so this integral vanishes as well. This leaves us with

∫
Ω

∇u · ∇v dΩ =
∫

Ω
ρv dΩ. (3.6)

We call the term on the left hand side a bilinear form, denoted as a(u, v), and the
term on the right hand side a linear form, denotes F (v). Using this notation, we
can reformulate the problem as

10

Find u ∈ V : a(u, v) = F (v) ∀v ∈ V. (3.7)

The Lax-Milgram Lemma ensures that this solution exists and that it is unique
[20, p. 61].

3.2.2 A note on boundary conditions

You may have observed that this derivation was for domains with homogeneous
Dirichlet boundary conditions. However, in the simulations done with FFI-MCS,
we generally have inhomogeneous Dirichlet boundaries. As described in Fatnes’
thesis though, we can perform a transformation between these two cases using a
lifting vector [18, pp. 9-10], and so if we find a way to solve the homogeneous case,
we can also solve the inhomogeneous case.

3.3 Discretization

To solve (3.7) on a computer, we need to discretize the problem. In the finite
difference method, the differential operator is discretized, but in the finite element
method we discretize the solution space instead. That is, instead of looking for
solutions u ∈ V , we look for an approximate solution uh ∈ Vh ⊂ V . The discretized
problem can then be stated as

Find uh ∈ Vh : a(uh, vh) = F (vh) ∀vh ∈ Vh. (3.8)

This is called the Galerkin problem [20, p. 61]. Any function in this finite-dimensional
subspace Vh ⊂ V can be written as a linear combination of some basis in this space.
Therefore it suffices to check that (3.8) holds for each basis function, and the prob-
lem can be rewritten as

Find uh ∈ Vh : a(uh, ϕi) = F (ϕi), i = 1, 2, . . . , Nh, (3.9)

where Nh = dim Vh, the dimension of the space, and {ϕi} form some basis of this
space. Furthermore, the solution uh can also be written as a linear combination of
the basis functions, uh =

∑
j ujϕj , and so the problem reads

Find {uj} : a

 Nh∑
j=1

ujϕj , ϕi

 = F (ϕi), i = 1, 2, . . . , Nh. (3.10)

11

Since a(u, v) is a bilinear form, this can be be written as

Find {uj} :
Nh∑
j=1

uja(ϕj , ϕi) = F (ϕi), i = 1, 2, . . . , Nh. (3.11)

This is a standard matrix-vector multiplication, and so we can arrive at our final
formulation:

Find u : Au = F, (3.12)

u being the vector with uj as its elements, and A being the matrix with elements
aij = a(ϕj , ϕi). We call A the stiffness matrix, and F the load vector.

3.4 Assembly

The stiffness matrix consists of the elements

Aij = a(ϕj , ϕi) =
∫

Ω
∇ϕj · ∇ϕi dΩ, (3.13)

and with the correct choice of basis functions, these elements are easily computed
analytically for every i, j. A common choice of basis is linear nodal basis functions,
where the basis functions are piece-wise linear functions with value 1 at one node
with support only on the elements of which the node is a vertex. An illustration
of such nodal basis functions in 1D is shown in figure 3.1.

As our basis functions only have support on elements containing their respective
node, the integral only has contributions from these elements. We can therefore
easily assemble the stiffness matrix by looping over elements and adding up the
elemental contirbutions. As the basis functions are linear functions, the integral is
easy to compute - their derivatives are constants.

The load vector consists of the elements

Fi =
∫

Ω
ρϕi Ω. , (3.14)

and may be a little more complicated to assemble than the stiffness matrix. One
has to loop over all particles in the system, distirbute their charge over nearby
nodes and then sum up all local contirbutions.

The assembly procedures for the system are well-described in Fatnes’ thesis [18,
Ch. 2].

12

0

1

xi−2 xi−1 xi xi+1 xi+2

ϕiϕi−1 ϕi+1

Figure 3.1: Example of linear basis functions on a 1D mesh with
compact local support on the elements to which they belong. Each
basis function ϕi has support only on elements i and i + 1, where
element i is the interval [xi−1, xi], being exactly 0 everywhere else.

3.5 Solving the system

We are left with a linear system of equations and need a way to solve it in order to
find the solution u. It is possible to solve it using a direct solver, for example normal
Gaussian elimination, but this often takes a very long time as the stiffness matrix
can be very large, and thus this method is not feasible. The preferred approach
is usually to use an iterative solver. In FFI-MCS, the solver of choice has been
the preconditioned conjugate gradient method (PCG). It was implemented into
FFI-MCS in Åsen’s thesis [15], and is based on Saad’s paper [23]. For a detailed
explanation of the algorithm and its implementation, refer to the theses by Åsen
and Fatnes [15, 18]. Here the algorithm from Fatnes’ thesis is simply restated in
algorithm 3.1.

The algorithm is one of several implemented in FFI-MCS, but Fatnes found that
the PCG solver was the fastest solver [18, p. 30], and so the other solvers are no
longer in use. This algorithm has a relatively easy-to-implement parallel version,
which will be presented later as the main focus of this thesis.

13

Algorithm 3.1 The preconditioned conjugate gradient method from Fatnes’ thesis
[18, p. 29]. Variables are defined as in the input blocks. Furthermore, r is the
residual vector, and the rest are working vectors and scalars.

Inputs
Stiffness matrix A
ILU0 factorization of stiffness matrix, ALU = L + U
Load vector b
Initial guess x0
Tolerance τ

Output: Solution x

r0 = b − Ax0
Solve LUz0 = r0
p = z0
i = 0
while ||ri||2 ≥ τ do

α = ri·zi

p·Ap
xi+1 = xi + αAp
ri+1 = ri − αAp
Solve LUzi+1 = ri+1
β = ri+1·zi+1

ri·zi

p = zi+1 + βp
i = i + 1

end while

14

Chapter 4

Distributed Memory
Parallelisation

When parallelizing an equation solver, there are two main approaches taken: dis-
tributed memory and shared memory parallelization. Both have their advantages
and disadvantages, and which one should choose depends upon what kind of pro-
gram you are parallelizing and how efficient it needs to be. Shared memory par-
allelization is usually the easiest road to take, as it can often be achieved through
a small amount of pre-processor statements in the code using a framework such as
OpenMP. Distributed memory parallelization, on the other hand, often demands
that you put more thought into communication patterns and load balancing. In
some applications, the two strategies are combined to good effect.

4.1 OpenMP

OpenMP is a shared-memory application programming interface (API) for C(++)
and Fortran [24]. It is usually simple to implement in a serial program, as all you
need are some pre-processor statements in your code, after which the compiler takes
care of the rest. Though adding these statements is easy enough, care needs to be
taken to ensure the thread-safety of the routines used in these parallel sections of
the code to avoid race conditions. This is the approach used by Bolstad in his
project thesis to parallelize the particle scattering routines [1]. An example of a
very simple implementation of the dot product in Fortran and OpenMP is shown
in listing 4.1 and 4.2.

15

MODULE dotprod
IMPLICIT NONE

CONTAINS
FUNCTION dot(a, b)

REAL, INTENT(in) :: a(:), b(:)
REAL :: dot
INTEGER :: i

dot = 0.0

DO i=1, SIZE(a)
dot = dot + a(i) * b(i)

END DO

END FUNCTION
END MODULE dotprod

Listing 4.1: A serial implementation
of the dot product in Fortran.

MODULE dotprod
IMPLICIT NONE

CONTAINS
FUNCTION dot(a, b)

REAL, INTENT(in) :: a(:), b(:)
REAL :: dot
INTEGER :: i

dot = 0.0
!$omp parallel
!$omp do schedule(static)
reduction(+:dot)↪→

DO i=1, SIZE(a)
dot = dot + a(i) * b(i)

END DO
!$omp end do
!$omp end parallel

END FUNCTION
END MODULE dotprod

Listing 4.2: A parallel implementation of
the dot product using Fortran OpenMP.

4.2 MPI

The Message Passing Interface (MPI) is a standard for distributed-memory paral-
lelization with implementations mainly for C/C++ and Fortran [25]. In an MPI
program, the program is launched as several distinct processes, either on the same
machine or on separate machines communicating over a network. This makes MPI
very scalable, as it can be run over any number of nodes, as opposed to OpenMP
which is limited by the number of processor cores of the machine it is running on.
With careful design of the data structures used and the communication patterns
between the MPI processes, very efficient parallelized programs can be made, typ-
ically with better performance compared to a shared-memory parallelization. This
performance gain over shared-memory implementations comes from e.g. better
cache locality, and faster memory access as the processors do not share memory.

An implementation of the dot product in MPI is much more involved than in
OpenMP, and the code would be much longer, and an example of this is therefore
omitted from this section.

16

4.3 Hybrid approaches

In some case shared-memory and distributed-memory parallelization using MPI
and OpenMP are combined. For example you may distribute some calculations
which are loosely coupled between some sub-domains over several computers us-
ing MPI and then performing some more tightly coupled computatations within
the subdomains on each machine using OpenMP. An implementation using this
approach is presented by Guo et al. in [26].

4.4 Approach used in FFI-MCS

Up until now, the only parallelization approach used in FFI-MCS is shared-memory
parallelization using OpenMP. It is used in the parallel flight and scattering routines
developed by Bolstad in his project thesis [1]. To develop the parallel Poisson solver,
MPI was the tool of choice, as a domain decomposition technique was to be used,
which with an efficient partitioning of the mesh reduces the need for communication
between processes, and so there is more room for optimization using MPI. In the
future, one might look at migrating the flight and scattering routines from OpenMP
to MPI as this might yield performance benefits as well.

17

18

Chapter 5

Partitioning the Mesh

In order to effectively use a domain decomposition method to parallelize the solver,
we need to partition the problem mesh into several sub-meshes. This chapter will
go through the options that were considered, and the approach that was ultimately
chosen.

5.1 Different approaches

Some different approaches to partitioning were considered, in particular using the
built-in partitioner in the already-used mesh software Gmsh, developing a embed-
ded into FFI-MCS and incorporating the third-pary library METIS into the code.
A summary of the different approaches and their benefits and drawbacks follows.

5.1.1 Using Gmsh’s partitioner

Gmsh is the meshing software already used to create models for simulations in FFI-
MCS. Included in the Gmsh distribution, is a few different partitioners, for example
the widely-used library METIS [27]. Anyone using FFI-MCS should already have
Gmsh installed on their machine, and so this would be a very natural approach. Im-
plementing the partitioned mesh into FFI-MCS would not be very difficult either,
as the mesh file format does not differ greatly between partitioned and unparti-
tioned meshes.

However, there have been signals from the researchers at FFI about not wanting
to interconnect FFI-MCS and Gmsh too much, as this would make the code even
more reliant on Gmsh - which is, when all comes to all, a third-party dependency.
They are also looking at the possibility of shipping an in-house mesher to use with
FFI-MCS, and so changes to the file format it uses should be kept to a minimum.

A benefit of “outsourcing” the partitioner to a third party is that developers of

19

FFI-MCS would not need to maintain even more code. This extra feature would
also render the whole program more complicated, and if it is tightly couples to the
rest of the program code, the maintainability of FFI-MCS as a whole could suffer.

5.1.2 Developing an embedded partitioner

Another possibility is developing a meshing procedure which will automatically
partition any mesh supplied in a simulation to the correct amount of sub-meshes
based on the number of parallel processors. This would abstract the partionining
end of things away, so that the end user would not need to think about it. This
was the preferred approach of the researchers at FFI.

5.1.3 Using the METIS library

Instead of using METIS through Gmsh, one could the library into FFI-MCS. This,
however, arguably couple FFI-MCS even more tightly to third-party dependencies.
Not only would it be dependent on a third-party software, but a specific version
of one library. Changes in either Gmsh or METIS could then render the simulator
broken if great care is not given to which versions are used. As METIS is imple-
mented in C, one would also need to use bindings between Fortran and C code,
further complicating the code.

5.2 Making a decision

After some explorative work, it was decided to either go for Gmsh’ partitioner, or
to implement an embedded partitioner. Using METIS in the FFI-MCS code did
not seem like a viable option because of the complexity of involving C bindings in
the code and the maintainability hit FFI-MCS would take.

The signals from FFI was that the embedded partitioner was the preferred ap-
proach. Work was therefore started to implement this it, at first exploring dif-
ferent partitioning algorithms. Among the algorithms considered were recursive
graph bisection and recursive graph labeling. I decided to go for the graph la-
beling algorithm presented by Nikishkov [28], as I was going to use his parallel
preconditioned conjugate gradient algorithm. A great amount of work was put
into implementing the the partitioner, but after some time it was apparent that it
was taking too much time and would negatively affect the chances of implementing
the parallel solver in time. Therefore a choice was made to abandon this effort and
instead use Gmsh’ partitioner.

20

5.3 Incorporating the Gmsh partitioner

Incorporating the Gmsh partitioner involves modifying both the procedures for
reading in the mesh file to support partitioned meshes, and implementing support
for this partitioned mesh in the triangulation routines and the Poisson solver. When
first researching the support for partitioned meshes in Gmsh, it seemed as if support
for a newer mesh format, MSHv4, was needed in place of the older version, MSHv2,
which was in use by FFI-MCS. Therefore this was the version implemented into
FFI-MCS, resulting in a major rewrite of the mesh reading code. After this work
had more or less concluded, it was discovered that this was incorrect, and that the
older MSHv2 format also supported partitions.

The newer MSHv4 format does however have some benefits over the old format
which may be beneficial to a parallel solver based on domain decomposition. When
a partitioning was done in the MSHv2 format, the partition number of each element
was simply appended to every element definition line. In the newer format, elements
and nodes are grouped into entities. These entities may be points, curves, surfaces
or volumes. For a non-overlapping domain decomposition like we are using, nodes
in a volume entity belong to only one partition, while nodes in a point, curve or
surface entity may belong to several partitions - these are the boundaries between
partitions.

Because of this grouping, designing efficient communication patterns between the
processes may be much easier. You can group all the information about nodes lying
on a partition boundary together and send it with a single MPI call easily. This
is in contrast to the old mesh format, where you would have to implement some
custom method of detecting interfaces between partitions and assembling interface
node values to send.

21

22

Chapter 6

Implementation

Implementing a parallel Poisson solver for FFI-MCS required a lot of work. First
of all, a choice had to be made about how to parallelize the solver. Some parallel-
ization schemes require more work than others to implement, while other solutions
are quite simple to implement, but might not yield the same performance benefits.
A lot of time was also spent trying to implement an embedded partitioner before
that approach was abandoned, which limited the time available to implement a
proper solver.

6.1 Program Flow

This section will give an overview of the new program flow for FFI-MCS with the
parallel Poisson solver.

6.1.1 Mesh Partitioning

Mesh partitining is not a part of the main program flow, but done externally
using Gmsh. However, an implementation of an embedded mesh partitioner was
attempted early in the thesis. It was abandoned after concluding that it would
take too much time.

6.1.2 Seperation of Main and Secondary Processes

As the secondary MPI processes in FFI-MCS at the moment do nothing but partake
in solving the Poisson equation, their program flow is quite divergent from the
main process. Therefore, their whole lifecycle has been put in its own module. At
the start of the program execution, all secondary processes are sent to this module
instead, where they await instructions from the main process. This is a very simple

23

check, just checking whether the process’ MPI rank is 0 or not, as shown in figure
6.1.

FFI-MCS Start

Is MPI rank 0?

Main pro-
gram flow

Secondary
program flow

Yes No

Figure 6.1: Separation of program flows at the start of FFI-MCS
execution.

6.1.3 Initialization Routines

For loading physical parameters, the mesh itself and other settings for the simula-
tion, one could opt for only the main process reading and initializing the configur-
ation, all processes doing so, or a mix of the two. In FFI-MCS, the first option is
the one used. The main process reads in all of the simulation settings, as well as
the partitioned mesh itself, and afterwards broadcasts necessary data to all other
processes using MPI routines.

FFI-MCS has a mix of primitive data arrays, which are easily sent using MPI, and
some composite data structures where one either has to make a new MPI type and
broadcast that, or make a routine for the specific structure for broadcasting its
data. The latter is what was opted for in FFI-MCS. Structures such as one holding
essential device parameters as well as the structure holding the triangulation data
have subroutines which use blocking MPI broadcast routines to send data.

A visualization of the initialization flow is shown in figure 6.2.

6.1.4 Main Program Loop

After initialization, FFI-MCS enters a loop which lasts until the given number
of time steps have been executed. In the main process, this includes solving the
Poisson equation, interpolation of the electric field, calculating particle scattering,
injecting and removing particles from the system and saving statistics. The second-
ary processes’ loop consists only of solving the Poisson equation however. Therefore
they will solve the Poisson equation, and then wait until the main process reaches
the Poisson solver code section again. An chart of this flow is shown in figure 6.3.

24

Main Start Secondary Start

Read and
initialise

configuration
and band data

Read mesh
and initialize
triangulation

Assemble
distributed

stiffness matrix

Place charges

Main process loop

Receive
triangulation

Assemble
distributed

stifness matrix

Receive charge
positions and

other core
parameters

Secondary process loop

MPI BCAST

MPI BCAST

Figure 6.2: Initialization routine for FFI-MCS.

6.1.5 Program End

When the simulation has concluded, the secondary processes simply exit, while the
main process saves various data and information, such as execution times. This is
unchanged from previous versions of FFI-MCS.

6.2 Parallel Preconditioned Conjugate Gradient

The algorithm of choice to parallelize FFI-MCS was the parallel preconditioned
conjugate gradient method (PPCG). This was because the serial version, the pre-
conditioned conjugate gradient method (PCG) was already in use in FFI-MCS. It
therefore seemed natural to go for its parallel version, as it seemed relatively easy
to implement.

The preconditioned conjugate gradient method uses only some matrix-vector and
vector-vector products when computing the solution. As these products are easily

25

parallelizable, and since the preconditioned conjugate gradient method is already
the primary solver in use in FFI-MCS, it seemed like a promising parallelization
route. The parallelization algorithm has been adopted from Nikishkov’s article
[28], and restated here in algorithm 6.1.

6.2.1 Distributed and Accumulated Vectors and Matrices

In his algorithm, there is a distinction between distributed and accumulated vectors
and matrices. An accumulated vector or matrix is one which contains contributions
from all partitions. A distributed vector or matrix is one which contains only
contributions from the current process’ partition. That is, if a node is part of
elements of different partitions, its distributed stiffness matrix entry contains only
contributions from the current process’ partitions. The accumulated versions of
these matrices and vectors will then simply be the sum of the distributed versions.

To calculate the distributed stiffness matrix and load vectors for every process,
simply skip all elements which do not belong to the process’ partition during as-
sembly. If the accumulated form is needed, this can be assembled during compu-
tation, using MPI routines.

6.2.2 The Algorithm

The algorithm is taken from Nikishkov’s paper [28], and is presented in algorithm
6.1. Comparing this algorithm to the serial version in algorithm 3.1, they are quite
similar, bar the communication calls in the parallel version.

The preconditioned conjugate gradient method uses only matrix-vector products
and inner products of vectors. Nikishkov shows in his article that for matrix-vector
products, you need a distributed matrix and an accumulated vector, and for inner
products, you need one accumulated vector and one distributed vector [28, pp. 16-
17].

26

Algorithm 6.1 The parallel preconditioned conjugate gradient method presented
in Nikishkov’s article [28, p. 19]. Variables are defined as in the input blocks.
Furthermore r is the residual vector, and the rest are working vectors and scalars.
Barred vectors, such as z̄, represent the accumulated form of their distributed
counterpart, z.

Inputs
Stiffness matrix A
Preconditioner M
Load vector b
Initial guess x0

Output: Solution x
r0 = b − Ax0
Send rb

i , receive reb
i , r̄i = ri + reb

i

for i = 1, 2, . . . do
Solve Mzi = r̄i

γi = r̄T
i z

Reduce γi

Send zb
i , receive zeb

i , z̄i = zi + zeb
i

if i = 1 then
p̄i = z̄i

else
p̄i = z̄i + (γi/γi−1)p̄i−1

end if
zi = Ap̄i

β = p̄T
i zi

Reduce β
Send zb

i , receive zeb
i , z̄i = ri + reb

i

ūi = ūi−1 + (γi/βi)p̄i

r̄i = r̄i−1 − (γi/βi)z̄i

if γi/γ0ε then
Convergence criteria satisfied: exit

end if
end for

27

Main start Secondary loop

Time to run
Poisson solver?

Solve Poisson
equation

Interpolate
electric field

Particle
scattering

Particle
injection

and deletion

t = tf ?

Save data
and statistics

Solve Poisson
equation

t = tf ?

Exit

Yes
No

Yes

No

Yes

No

MPI

Figure 6.3: Main loop flow of the main and secondary processes. To keep the chart
simple enough, t = t + dt has been omitted from the “No” paths for the t = tf ?
decision blocks.

28

Chapter 7

Parallel Workflow

Migrating from the serial version of the Poisson solver in FFI-MCS to a parallel
one also involves changing the workflow when using the simulator. This chapter
gives a quick overview over the workflow one might use for a parallel solver.

7.1 Creating the mesh

This step will still be the same as in earlier versions of FFI-MCS. However, one
must take care to define the mesh file format as version 4.1, and not 2.2 as before.
This is because the mesh file reading routines in FFI-MCS no longer support this
old mesh file format, as the newer one supports partitioned meshes in a better way
than the older versions.

For a guide on how to create a mesh for FFI-MCS, read the user guide made by
Bolstad in his master thesis [1, pp. 81-83].

7.2 Partitioning the mesh

The second step will be to partition the mesh inside of Gmsh. This is when the
user needs to decide on the number of processors they want to use. Usually this
will be equal to the core count of the machine, or the combined core count of all
nodes used in a cluster. However, there may be diminishing returns for increased
core counts, and if there are several simulations running on the same machine, the
user may want to limit the core count to share resources across simulations.

The choice of partition count will also depend on how fine the mesh is. Using a lot
of partitions for a relatively coarse mesh will not necessarily result in the wanted
performance gain as communication overhead between processes will become large.

29

Partitioning the mesh can also be done from the command line, as for example
gmsh -3 -order 1 -o mesh.msh -part PARTITION COUNT geometry.geo, where
PARTITION COUNT is the number of partitions wanted, and geometry.geo is your
Gmsh model file.1

7.3 Running FFI-MCS

FFI-MCS will need to be run using MPI. The user should launch a simulation using
MPI and a processor count equal to the partition count. To launch a simulation
using 20 cores for flight and scattering routines, and 32 cores for the Poisson solver,
you can use

OMP_NUM_THREADS=20 mpirun -np 32 bin/MonteFFI cases/model/settings.cfg

On some distributions, such as on Freiherr2, you might have to use mpirun.openmpi
instead of mpirun if FFI-MCS is compiled with gfortran.

7.4 Post-processing

This step will be identical to before. There is no difference in the format of the
outputted particle positions, energies and potential values. If you use the mesh
itself to plot values, you have to make sure your tool of choice supports the newer
MSHv4 format, and not just MSHv2.

7.5 Summary

The workflow will in many ways be similar to before, but the user needs to take
care in evaluating how many partitions to make against how many processor cores
they have at their disposal and how fine or coarse the mesh is.

1-3 means 3 dimensions and -order 1 means first order basis functions, that is, linear ones.
2FFI’s dedicated simulation machine

30

Chapter 8

Results

The implementation of the parallel Poisson solver was unfortunately not finished in
this thesis, and so performing any performance and efficiency benchmarks would
not be of great use. Therefore this section will primarily discuss some of the
erroneous results and what may be possible causes.

It may seem like the solver actually succeeds in calculating the potential locally, but
the combination between subdomains fails, giving rise to the problems of particles
falling into the “pit” and the potential looking very incorrect.

8.1 Validity

Perhaps the most important thing for a solver is to produce accurate results. The
parallel solver currently does not seem to work correctly, and the results it spits
out are not accurate. By looking at figures 8.1, 8.2 and 8.3, we can see that the
solver seems to fail at the boundaries between partitions. This is perhaps the most
common type of error to manifest itself in such a parallelized solver, and is per
now not known what causes it. After trying to debug the solver for a long time,
even trying the non-preconditioned PCG method to see if there was a problem with
preconditioning, it still produces erronous solutions.

One thing which is interesting though, is that even though it seems to fail quite
drastically at the interfaces between partitions, the solution inside each partition
on its own seems not too far off. However, this is just by looking at the plots, and
more digging needs to be done to find out what is producing these erronous results.

These incorrect solutions to the electric potential of course also affects the flight
and scattering routines. The holes in the system are drawn into the “boundary
pits” and get stuck there. This is illustrated in figure 8.4.

31

0 5 10 15 20 25 30

x (µm)

0

2

4

6

8

10

y
(µ

m
)

0

−1

−2

−3

−4

−5

−6

−7

(a) Start of simulation

0 5 10 15 20 25 30

x (µm)

0

2

4

6

8

10

y
(µ

m
)

0−1−2−3−4−5−6−7

(b) After 50% of runtime

0 5 10 15 20 25 30

x (µm)

0

2

4

6

8

10

y
(µ

m
)

0−1−2−3−4−5−6−7

(c) At end of simulation

Figure 8.1: The electric potential at the start, in the middle and
at the end of the simulation for 2 partitions. The scale at the left
is the electric potential in volts.

32

0 5 10 15 20 25 30

x (µm)

0

2

4

6

8

10

y
(µ

m
)

0

−1

−2

−3

−4

−5

−6

−7

(a) Start of simulation

0 5 10 15 20 25 30

x (µm)

0

2

4

6

8

10

y
(µ

m
)

0−1−2−3−4−5−6−7

(b) After 50% of runtime

0 5 10 15 20 25 30

x (µm)

0

2

4

6

8

10

y
(µ

m
)

0−1−2−3−4−5−6−7

(c) At end of simulation

Figure 8.2: The electric potential at the start, in the middle and
at the end of the simulation for 4 partitions. The scale at the left
is the electric potential in volts.

33

0 5 10 15 20 25 30

x (µm)

0

2

4

6

8

10

y
(µ

m
)

0−1−2−3−4−5−6−7

(a) Start of simulation

0 5 10 15 20 25 30

x (µm)

0

2

4

6

8

10

y
(µ

m
)

0
−1
−2
−3
−4
−5
−6
−7

(b) After 50% of runtime

0 5 10 15 20 25 30

x (µm)

0

2

4

6

8

10

y
(µ

m
)

0
−1
−2
−3
−4
−5
−6
−7

(c) At end of simulation

Figure 8.3: The electric potential at the start, in the middle and
at the end of the simulation for 64 partitions. The scale at the left
is the electric potential in volts.

34

0 5 10 15 20 25 30

x (µm)

2

4

6

8

10

y
(µ

m
)

(a) 64 partitions

0 5 10 15 20 25 30

x (µm)

2

4

6

8

10

y
(µ

m
)

(b) 4 partitions

0 5 10 15 20 25 30

x (µm)

2

4

6

8

10

y
(µ

m
)

(c) 2 partitions

Figure 8.4: The charge carriers of the system after the simulation
has finished for different partition counts. Holes are coloured red
and electrons are coloured blue. Notice how the holes seem to get
trapped at the interfaces between partitions.

35

8.2 Runtime

Even though the results produced by the solver were not correct, a benchmark
of its performance regardless of the solutions produced was attempted. Unfortu-
nately the solver as it stands right now has a communication pattern which is too
inefficient, leading to increased runtime for an increased core count. The commu-
nication patterns between processes at the moment has a lot of blocking operations
and processes waiting for one another. In addition, vectors are communicated one
element at a time, instead of using vectorized communications. The reasoning
behind this was to first make sure the solver produced correct results before optim-
izing, but as the solver never produced any correct results, this optimization was
never performed.

36

Chapter 9

Further work

The particle scattering routines of FFI-MCS are now parallelized, and there is a
preliminary implementation of the parallel Poisson solver. There still exists many
areas of the FFI-MCS which could still be improved, though. In this chapter some
recommendations on future development of FFI-MCS are presented.

9.1 Fix the parallel Poisson solver

The current state of the parallel Poisson solver leaves a lot to be desired. While
some work has been done to implement the parallelized preconditioned conjugate
gradient method, it does not as of yet yield correct results.

This work is of the highest priority. The Poisson solver is one of the two integral
parts of the simulation software, and if it does not produce correct results, the sim-
ulation will break down. Work should be done to see if the current implementation
of partitioning and parallelization can be fixed, or if the solver has to be completely
rewritten using another approach.

9.2 Optimise MPI communication patterns

As of now, the communication pattern in the parallel solver procedure is quite
inefficient. Accumulation of a distributed vector is done by sending and receiving
individual values of the distributed vector using blocking MPI procedures.

One approach could be to assemble all values belonging to one Gmsh partitioned
entity1, and then send and receive all values for that entity using a single MPI
procedure. This would cut down the communication overhead drastically.

1A Gmsh parititioned entity can belong to several partitions.

37

Another approach is to use non-blocking MPI procedures. Right now, only half
of the MPI ranks will be sending their distributed vector values at any one time.
Using non-blocking MPI communications, one can cut down on the time wasted
by waiting for other MPI ranks to send/receive.

Ultimately both of these improvements should be implemented into FFI-MCS.
Neither is particularly challenging for someone familiar with distributed-memory
parallelization and MPI, and so they would yield a good performance increase for
relatively little work.

9.3 Migrate scattering routines from OpenMP to
MPI

Right now, the particle scattering routines of FFI-MCS are using OpenMP for par-
allelization. The consequence of this is that we have two parallelisation techniques
in FFI-MCS, OpenMP and MPI. Using MPI, one could probably improve the per-
formance of the scattering routines by moving away from using shared memory, to
having every MPI rank take care of a set fraction of the total superparticles. This
way FFI-MCS would also become more scalable, and both the scattering routines
and the Poisson solver could run on multiple nodes on a computing cluster.

9.4 Other parallelization areas

The speedup associated with an increasing process count in a parallel program
is limited by the fraction of the program which is still serial. After the particle
scattering routine and the Poisson solver have been parallelized and optimised, it
is worth to look into whether other parts of the simulator can be parallelized to
reduce the serial fraction of the program. This may for example be the electric
field interpolation routine and routine for finding the particles’ element positions.

9.5 Improving documentation

As of today, there is no proper documentation for FFI-MCS. There are project and
master’s theses written about its development, some including user guides, but it
should not be necessary to read all of these to know how to use the program. In
addition, the quality of the documentation of the code is very varying.

Another consideration is adding an automatic documentation generator to the pro-
ject. There are different alternatives available, such as f90doc2, Doxygen3 and

2https://erikdemaine.org/software/f90doc/
3https://www.doxygen.nl/

38

FORD4. FORD seems like a good choice, as it generates nice-looking modern doc-
umentation pages, while handling Fortran source code better Doxygen, which is a
popular documentation generator for many other programming languages.

9.6 Configuration and data files layout

Right now, configuration files for each simulation case are stored in their respective
subfolders under the cases folder, while the output data is always put into the
data folder. There might be merit in looking into other ways of structuring the file
layout, such as outputting each case’ output data into a subfolder in their respective
case folder. This should however not be a prioritised improvement, as the current
structure does work.

9.7 Version Control

FFI-MCS development has been passed on from developer to developer by means
of just copying the project from one computer to another. Though one might be
hesitant to turn to something newer and more complex, the benefits to version
control tools like Git are not to be understated. Having a single repository for
the code where new functionality can be developed in branches and releases can
be tagged and stored in a controlled manner would be of great help to future
developers.

9.8 Persistent distributed stiffness matrix

As of now, no routines have been implemented to save the distributed stiffness
matrix to disk, which means that this has to be reassembled every time FFI-MCS
is run. Similar to how the serial version of FFI-MCS works, it should be saved
to disk, so that new simulations on the same mesh can be run without needing to
reassemble the matrix.

9.9 Better output

The output from FFI-MCS at the moment can be very messy. There is a lot of
debugging text which probably should be disabled by default. A config option, or
a command line flag should be considered to enable or disable verbose logging. In
addition, one can consider showing an estimate of how long the simulation has left.

4https://github.com/Fortran-FOSS-Programmers/ford

39

40

Bibliography

[1] Andreas Bolstad. ‘Optimization of a Particle-Based Semiconductor Device
Simulator: Self-Consistent Ensemble Monte Carlo Method’. Project thesis.
Norwegian University of Science and Technology, 2020.

[2] Nicolai Stølen. ‘Parallelization Strategy for the Poisson Solver of a 3D Monte
Carlo Semiconductor Device Simulator’. Project thesis. Norwegian University
of Science and Technology, 2022.

[3] Andreas Bolstad. ‘Development of a 3D Particle-Based Device Simulator: A
Self-Consistent Monte Carlo Approach Using Tetrahedral Grids’. Master’s
thesis. Norwegian University of Science and Technology, 2020. url: https:
//hdl.handle.net/11250/2785543.

[4] Øyvind Olsen. ‘Construction of a transport kernel for an ensemble Monte
Carlo simulator’. Master’s thesis. Norwegian University of Science and Tech-
nology, 2009. url: http://hdl.handle.net/11250/246279.

[5] Ole Christian Norum. ‘Monte Carlo simulation of semiconductors: Program
Structure and Physical Phenomena’. Master’s thesis. Norwegian University
of Science and Technology, 2009. url: http://hdl.handle.net/11250/246281.

[6] Øyvind Sk̊aring. ‘Ultrashort Relaxation Dynamics in Laser Excited Semicon-
ductors’. Master’s thesis. Norwegian University of Science and Technology,
2010.

[7] Camilla Nestande Kirkemo. ‘Monte Carlo simulation of pn-junctions’. Mas-
ter’s thesis. Norwegian University of Science and Technology, 2011. url: http:
//urn.nb.no/URN:NBN:no-29691.

[8] Aksel Jan Verne Vestby. ‘Calculation of Terminal Currents in Single Photon
Excited Avalanche Photodiodes’. Master’s thesis. Norwegian University of
Science and Tehnology, 2012. url: http://hdl.handle.net/11250/246818.

[9] Ken Vidar Falch. ‘Ensemble averaged and single Particle Auger Lifetimes in
Zincblende Structure Semiconductors’. Master’s thesis. Norwegian University
of Science and Technology, 2013. url: http://hdl.handle.net/11250/247121.

[10] Bjørnar Karlsen. ‘Carrier Scattering Rates in Zincblende Structure Semicon-
ductors derived from 14 × 14 k · p and ab initio Pseudopotential Methods’.
Master’s thesis. Norwegian University of Science and Technology, 2013. url:
http://hdl.handle.net/11250/247104.

41

https://hdl.handle.net/11250/2785543
https://hdl.handle.net/11250/2785543
http://hdl.handle.net/11250/246279
http://hdl.handle.net/11250/246281
http://urn.nb.no/URN:NBN:no-29691
http://urn.nb.no/URN:NBN:no-29691
http://hdl.handle.net/11250/246818
http://hdl.handle.net/11250/247121
http://hdl.handle.net/11250/247104

[11] Tore Sivertsen Bergslid. ‘Implementing a Full-Band Monte Carlo Model for
Zincblende Structure Semiconductors’. Master’s thesis. Norwegian University
of Science and Technology, 2013. url: http://hdl.handle.net/11250/247128.

[12] Juri Selv̊ag. ‘High Precision, Full Potential Electronic Transport Simulator:
Implementation and First Results’. Master’s thesis. Norwegian University of
Science and Technology, 2014. url: http://hdl.handle.net/11250/247368.

[13] J J Harang. ‘Implementation of Maxwell Equation Solver in Full-Band Monte
Carlo Trans- port Simulators’. Project thesis. 2015.

[14] Theophile Jean Marie Chirac. ‘Monte Carlo Simulation of Photoconductive
Terahertz Sources in Mercury Cadmium Telluride’. Master’s thesis. Norwe-
gian University of Science and Technology, 2016. url: http://hdl.handle.net/
11250/2394152.

[15] David Kristian Åsen. ‘Self-Force Reduced Finite Element Poisson Solvers
for Monte Carlo Particle Transport Simulators’. Master’s thesis. Norwegian
University of Science and Technology, 2016. url: http ://hdl .handle .net/
11250/2418022.

[16] Dara Goldar. ‘Calculation of Wavefunction Overlaps in First Principles Elec-
tronic Structure Codes’. Master’s thesis. Norwegian University of Science and
Technology, 2017. url: http://hdl.handle.net/11250/2461490.

[17] Mikael Haug. ‘Schrödinger-Poisson and nonequilibrium Green’s function meth-
ods applied to layered semiconductor devices’. Master’s thesis. Norwegian
University of Science and Technology, 2018. url: http : //hdl . handle . net/
11250/2562316.

[18] Siri Narvestad Fatnes. ‘A Three-Dimensional Finite Element Poisson Solver
for Monte Carlo Particle Simulators’. Master’s thesis. Norwegian University
of Science and Technology, 2018. url: http://hdl.handle.net/11250/2567223.

[19] Mats Estensen. ‘Simulation of a Mercury Cadmium Telluride Avalanche Photo
Diode’. Master’s thesis. Norwegian University of Science and Technology,
2019. url: http://hdl.handle.net/11250/2611911.

[20] Alfio Quarteroni. Numerical Models for Differential Problems. Vol. 16. MS&A.
Cham: Springer International Publishing, 2017. doi: 10.1007/978- 3- 319-
49316-9.

[21] Susanne C. Brenner and L. Ridgway Scott. The Mathematical Theory of
Finite Element Methods. Vol. 15. Texts in Applied Mathematics. New York,
NY: Springer New York, 2008. doi: 10.1007/978-0-387-75934-0.

[22] Giuseppe Pelosi, Roberto Coccioli and Stefano Selleri. Quick finite elements
for electromagnetic waves. 2nd ed. Artech House electromagnetic analysis
series. Boston: Artech House, 2009. 289 pp. isbn: 9781596933453.

[23] Yousef Saad. Iterative Methods for Sparse Linear Systems. Second. Soci-
ety for Industrial and Applied Mathematics, Jan. 2003. doi: 10 . 1137 / 1 .
9780898718003.

[24] OpenMP Application Programming Interface. 2015. url: https://www.openmp.
org/wp-content/uploads/openmp-4.5.pdf (visited on 4th Feb. 2022).

42

http://hdl.handle.net/11250/247128
http://hdl.handle.net/11250/247368
http://hdl.handle.net/11250/2394152
http://hdl.handle.net/11250/2394152
http://hdl.handle.net/11250/2418022
http://hdl.handle.net/11250/2418022
http://hdl.handle.net/11250/2461490
http://hdl.handle.net/11250/2562316
http://hdl.handle.net/11250/2562316
http://hdl.handle.net/11250/2567223
http://hdl.handle.net/11250/2611911
https://doi.org/10.1007/978-3-319-49316-9
https://doi.org/10.1007/978-3-319-49316-9
https://doi.org/10.1007/978-0-387-75934-0
https://doi.org/10.1137/1.9780898718003
https://doi.org/10.1137/1.9780898718003
https://www.openmp.org/wp-content/uploads/openmp-4.5.pdf
https://www.openmp.org/wp-content/uploads/openmp-4.5.pdf

[25] Message Passing Interface Forum. MPI: A Message-Passing Interface Stand-
ard Version 4.0. 9th June 2021. url: https://www.mpi-forum.org/docs/mpi-
4.0/mpi40-report.pdf.

[26] Xiaohu Guo et al. ‘Developing a scalable hybrid MPI/OpenMP unstructured
finite element model’. In: Computers & Fluids 110 (Mar. 2015), pp. 227–234.
doi: 10.1016/j.compfluid.2014.09.007.

[27] George Karypis and Vipin Kumar. METIS: A Software Package for Par-
titioning Unstructured Graphs, Partitioning Meshes, and Computing Fill-
Reducing Orderings of Sparse Matrices. Sept. 1998.

[28] Gennadiy Nikishkov. ‘Basics of the Domain Decomposition Method for Finite
Element Analysis’. In: (Jan. 2008).

43

https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf
https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf
https://doi.org/10.1016/j.compfluid.2014.09.007

